Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 241-248     DOI: 10.6046/zrzyyg.2024090
|
Design and implementation of a canoeing sport monitoring system with virtual-real interactions based on real-scene 3D
WU Jianhua(), KONG Xianglin, TU Haowen, GONG Zhigang, GUO Pengcheng()
School of Geography and Environment & Key Laboratory of Training Monitoring and Intervention for Aquatic Sports, State Sports General Administration & Research Center for Linguistic Spatial Information Science, Jiangxi Normal University, Nanchang 330022, China
Download: PDF(2748 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Canoeing is an important Olympic event; however, high-precision positioning and map data visualization technologies have not been widely adopted during the training phase of canoeing. To bridge this gap, this study proposed a domestically pioneering canoeing sport monitoring system based on real-scene 3D. This system integrates high-precision positioning, virtual reality (VR), and virtual-real fusion technologies, providing athletes and coaches with a straightforward, precise data analysis platform. First, this study presents an overview of the background and significance of the construction of the system. Then, it describes the architecture, major functions, and database design of the system. Finally, it introduces the software system development using technologies including the Cesium platform for 3D geospatial applications, ArcGIS Server, ArcGIS API for JavaScript, and WebSocket. The methods for developing key functions are also described. The core functions encompass 3D visualization of the training field, venue query and positioning, virtual-real integration of trajectories, real-time positioning and monitoring, trajectory playback, and data analysis. Therefore, this system enjoys the advances of high-precision positioning, 3D real scene visualization, and virtual-real fusion. The applications of this system will enhance the efficiency and quality of canoeing training and provide a valuable reference for related research fields.

Keywords canoeing      geographic information system (GIS)      real-scene 3D      positioning monitoring      data analysis     
ZTFLH:  TP79  
  P208  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jianhua WU
Xianglin KONG
Haowen TU
Zhigang GONG
Pengcheng GUO
Cite this article:   
Jianhua WU,Xianglin KONG,Haowen TU, et al. Design and implementation of a canoeing sport monitoring system with virtual-real interactions based on real-scene 3D[J]. Remote Sensing for Natural Resources, 2025, 37(4): 241-248.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024090     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/241
Fig.1  System architecture diagram
Fig.2  System function structure chart
列名 数据类型 长度(位或
字符数)
列说明
id int 11 自增编号id,主键
boat_no varchar 100 皮划艇编号
status int 2 皮划艇状态
boat_name varchar 100 皮划艇名称
lon double 经度/(°)
lat double 纬度/(°)
height double 高程/m
distance double 累计距离(m)
speed double 速度(m/s)
stroke_rate double 桨频(次/min)
heart_rate int 3 心率(BPM)
create_time datetime 传入时间
Tab.1  The data structure of canoeing real-time data table
列名 数据类型 长度(位或字符数) 列说明
deveice_id bigint 20 设备编号,主键
unit varchar 150 设备所在单位
place varchar 150 设备运行地点
channel_no int 11 航道
Tab.2  The data structure of dynamometer registry
Fig.3  The function display of system main interface
Fig.4  Canoeing positioning monitoring interface based on 3D scene
Fig.5  Building location and query interface
Fig.6  The tracking monitor interface of single canoeing
Fig.7  The track playback interface of virtual and real canoeing
[1] 田中, 陈贵岐. 皮划艇项目的训练监控[J]. 沈阳体育学院学报, 2011, 30(5):87-90.
[1] Tian Z, Chen G Q. Training monitoring in kayak/canoe event[J]. Journal of Shenyang Sport University, 2011, 30(5):87-90.
[2] 胡璞, 易名农, 刘嘉. 基于多传感器数据融合技术的水上训练监控系统的研制与应用[J]. 武汉体育学院学报, 2015, 49(3):96-100.
[2] Hu P, Yi M N, Liu J. Development and application of supervision and evaluation system based on data integration of multi-sensors for water training of rowing[J]. Journal of Wuhan Institute of Phy-sical Education, 2015, 49(3):96-100.
[3] 杜芸芸, 杨海英. 激流回旋视频监测系统研制[J]. 武汉体育学院学报, 2013, 47(10):77-80.
[3] Du Y Y, Yang H Y. Development of video monitoring system of whitewater slalom based on cloud computing[J]. Journal of Wuhan Institute of Physical Education, 2013, 47(10):77-80.
[4] 李媛, 史东林, 纪霄峰, 等. 皮划艇训练状态多参数遥测装置的研制[J]. 当代体育科技, 2014, 4(5):18-19.
[4] Li Y, Shi D L, Ji X F, et al. Development of real-time information kayaking training status of multi-parameter telemetry[J]. Contemporary Sports Technology, 2014, 4(5):18-19.
[5] 孙晋海, 王家宏, 马运超, 等. 基于多传感器的皮划艇训练信息融合分析系统的研发与应用[J]. 北京体育大学学报, 2015, 38(5):115-121.
[5] Sun J H, Wang J H, Ma Y C, et al. Training information fusion analysis system of multi-sensor canoeing[J]. Journal of Beijing Sport University, 2015, 38(5):115-121.
[6] 郝正东. 基于可穿戴计算的皮划艇技术动作识别与评价[D]. 大连: 大连理工大学, 2021.
[6] Hao Z D. Identification and evaluation of kayak technical movements based on wearable computing[D]. Dalian: Dalian University of Technology, 2021.
[7] 徐红. 以新型基础测绘为支撑,走向更广阔的三维世界——访自然资源部国土测绘司司长武文忠[J]. 中国测绘, 2022(5):8-11.
[7] Xu H. Embracing a broader three-dimensional world with new roundation surveying and mapping support:Interview with Wu Wenzhong,director of the Department of Land Surveying and Mapping of the Ministry of Natural Resources[J]. China Surveying and Mapping, 2022(5):8-11.
[8] 李佳俊, 徐辉, 赵大伟. 实景模型在传统村落数字博物馆中的应用[J]. 国土资源遥感, 2019, 31(1):264-270.doi:10.6046/gtzyyg.2019.01.34.
[8] Li J J, Xu H, Zhao D W. The application of real scene model to digital museum of traditional villages[J]. Remote Sensing for Land and Resources, 2019, 31(1):264-270.doi:10.6046/gtzyyg.2019.01.34.
[9] 陈洁, 蔡君, 李京, 等. 倾斜航空摄影技术及在地质调查中的应用研究——以三峡库区巫峡地区为例[J]. 国土资源遥感, 2021, 33(1):167-173.doi:10.6046/gtzyyg.2020133.
[9] Chen J, Cai J, Li J, et al. Oblique aerial photography technology and its application to geological survey:A case study of Wuxia section in the Three Gorges Reservoir[J]. Remote Sensing for Land and Resources, 2021, 33(1):167-173.doi:10.6046/gtzyyg.2020133.
[10] 朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6):1040-1049.
[10] Zhu Q, Zhang L G, Ding Y L, et al. From real 3D modeling to digi-tal twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):1040-1049.
[11] 张广波. 面向倾斜实景模型的三维可视化平台建设技术研究[J]. 测绘通报, 2021(s1):277-281.
[11] Zhang G B. Research on the construction technology of 3D visuali-zation platform oriented to inclined reality model[J]. Bulletin of Surveying and Mapping, 2021(s1):277-281.
[12] 周勇帅. 基于Cesium框架实现倾斜摄影单体化的方法研究[D]. 成都: 成都理工大学, 2020.
[12] Zhou Y S. Research on the method of oblique photography monomer based on Cesium framework[D]. Chengdu: Chengdu University of Technology, 2020.
[1] XU Yaoyao, WU Hanyu, YU Junjie, ZHU Yishu, WANG Jilong, PENG Bo. A spatial demarcation method for town areas: A case study of Xiapu County, Ningde City, Fujian[J]. Remote Sensing for Natural Resources, 2025, 37(4): 163-172.
[2] ZHONG Le, ZENG Yan, QIU Xinfa, SHI Guoping. Suitability regionalization of Myrica rubra planting in Zhejiang Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 236-244.
[3] Chenyang QU, Li ZHANG, Mingquan WANG, Maohua WANG. GDP estimation model of county areas based on NPP/VIIRS satellite nighttime light data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 81-87.
[4] Yifang DUAN, Zhiyuan REN, Xiao ZHOU, Yijie SUN. Spatio-temporal variation in the land ecological risk of Yan’an City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 120-129.
[5] SHAO Qiufang, PENG Peihao, HUANG Jie, LIU Zhi, SUN Xiaofei, SHAO Huaiyong. Monitoring eco-environmental vulnerability in Anning River Basin in the upper reaches of the Yangtze River using remote sensing techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 175-181.
[6] CHEN Qi, ZHAO Zhifang, HE Binxian, WANG Di, XI Jing. Environmental recovery and management planning based on RS and GIS techniques: A case study of the Yuanyang gold mining area in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 167-171.
[7] CHEN Jun, DU Peijun, TAN Kun. An improved unsupervised classification scheme for polarimetric SAR image with MCSM-Wishart[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 15-21.
[8] WANG Dong-yin, ZHU Gu-chang, ZHANG Yuan-fei. Spatial Structure Features and Basic Statistic Parameters of Typical Ground Object Spectral Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 138-145.
[9] WU De-Wen, ZHU Gu-Chang, ZHANG Yuan-Fei, YUAN Ji-Ming. THE MULTIVARIATE DATA ANALYSIS AND THE
MODEL  FOR EXTRACTING  REMOTE SENSING
MINERALIZATION AND ALTERATION INFORMATION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 22-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech