Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 53-61     DOI: 10.6046/zrzyyg.2024198
|
A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery
GONG Shaojun1(), CHEN Chao2(), FAN Jing3
1. College of Marine Science and Technology,Zhejiang Ocean University,Zhoushan 316022,China
2. School of Geography Science and Geomatics Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
3. Zaozhuang Network Security Guarantee Center,Zaozhuang 277899,China
Download: PDF(4708 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Coastlines serve as one of the most essential basic geographic elements. However,conventional methods generally face challenges in the accurate detection of their location,due to instantaneous remote sensing imaging and dynamic tidal phenomena. In response to this,this study developed a novel coastline extraction model that incorporates information on surface moisture content derived from long-time-series satellite remote sensing imagery. First,all available remote sensing images covering the study area during the target period were acquired to construct a high-quality remote sensing image stack. Second,the wetness components indicative of the surface moisture content were obtained using the tasseled cap transformation (TCT),from which a wetness index stack was constructed. Then,the wetness components were subjected to maximum value synthesis using the maximum spectral index composite (MSIC) algorithm,generating a maximum water surface composite image. Finally,the composite image was segmented using the OTSU algorithm to extract accurate coastline information. Validation experiments were conducted on Zhoushan Island using the Google Earth Engine (GEE) cloud computing platform and remote sensing imagery from the operational land imager (OLI) onboard the Landsat 8 satellite. The results indicate that the proposed model can precisely locate different types of coastlines with high spatial accuracy. Compared to visual interpretation,the model exhibited a mean deviation and a root mean square error (RMSE) of 3.42 m and 6.79 m,respectively,with 99.42% of validation points falling within one pixel width. This study provides an effective technical framework for high-accuracy coastline extraction,holding great significance for scientific management and sustainable development of coastal resources.

Keywords coastline      wetness component      tasseled cap transformation (TCT)      long-time-series remote sensing imagery      precise localization     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaojun GONG
Chao CHEN
Jing FAN
Cite this article:   
Shaojun GONG,Chao CHEN,Jing FAN. A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 53-61.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024198     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/53
Fig.1  Image of the study area
Fig.2  Flowchart of the study
序号 成像日期 云量/% 潮汐信息(北京时间) 序号 成像日期 云量/% 潮汐信息(北京时间)
验潮站 高潮时刻 低潮时刻 验潮站 高潮时刻 低潮时刻
1 2022-01-03 117 39 1.05 沈家门 09:56 03:26 9 2022-03-24 117 40 13.50 岱山 13:54 08:54
2 2022-01-03 117 40 3.25 沈家门 09:56 03:26 10 2022-04-09 117 40 8.55 岱山 15:04 10:17
3 2022-01-19 117 40 0.35 沈家门 10:40 04:20 11 2022-05-02 118 39 11.24 岱山 11:12 05:46
4 2022-02-27 118 39 0.08 沈家门 07:03 14:43 12 2022-08-22 118 39 9.55 岱山 06:28 12:32
5 2022-03-08 117 39 0.05 沈家门 06:40 12:17 13 2022-10-02 117 39 2.63 岱山 14:52 08:16
6 2022-03-08 117 40 0.07 沈家门 06:40 12:17 14 2022-10-02 117 40 3.88 岱山 14:52 08:16
7 2022-03-15 118 39 0.15 沈家门 08:11 14:50 15 2022-11-10 118 39 11.81 岱山 11:30 05:21
8 2022-03-24 117 39 0.03 沈家门 12:42 07:24 16 2022-11-26 118 39 6.21 岱山 12:08 05:44
Tab.1  Remote sensing images and tidal information
缨帽变换后分量 波段
蓝光 绿光 红光 近红外 短波红外1 短波红外2
亮度指数 -0.236 3 -0.283 6 -0.425 7 0.809 7 0.004 3 -0.164 0
绿度指数 0.130 1 0.229 0 0.349 2 0.179 5 -0.627 0 -0.620 0
湿度指数 -0.823 9 0.084 9 0.439 6 -0.058 0 0.201 3 -0.277 0
TCT4 -0.329 4 0.055 7 0.105 6 0.185 5 -0.434 9 0.808 5
TCT5 0.107 9 -0.902 3 0.411 9 0.057 5 -0.025 9 0.025 2
TCT6 0.344 3 0.405 7 0.466 7 0.534 7 0.393 0 0.241 2
Tab.2  Tasseled cap transformation coefficients for Landsat8 satellite reflectance
Fig.3  Result of coastline extraction
Fig.4  Coastline extraction of different methods
Fig.5  Comparison of coastline with different types
方法 面积/km2 长度/km 面积误差/% 长度误差/%
目视解译 514.43 146.84
本文方法 513.68 150.51 -0.14 2.50
NDWI法 516.19 152.40 0.34 3.79
MNDWI法 516.18 152.76 0.34 4.04
Tab.3  Comparisons in area and length of the coastline
Fig.6  Distribution map of points at different distances
方法 选取点数/个 距离平均值/m RMSE/m
本文方法 1 200 3.42 6.79
NDWI法 1 200 18.40 30.50
MNDWI法 1 200 18.03 30.12
Tab.4  Average and root mean square error
[1] Boak E H, Turner I L. Shoreline definition and detection:A review[J]. Journal of Coastal Research, 2005, 214:688-703.
[2] Kuleli T, Guneroglu A, Karsli F, et al. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey[J]. Ocean Engineering, 2011, 38(10):1141-1149.
[3] 侯西勇, 刘静, 宋洋, 等. 中国大陆海岸线开发利用的生态环境影响与政策建议[J]. 中国科学院院刊, 2016, 31(10):1143-1150.
[3] Hou X Y, Liu J, Song Y, et al. Environmental-ecological effect of development and utilization of China’s coastline and policy recommendations[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1143-1150.
[4] Sun W, Chen C, Liu W, et al. Coastline extraction using remote sensing:A review[J]. GIScience & Remote Sensing, 2023, 60(1):2243671.
[5] 刘宝银, 苏奋振. 中国海岸带与海岛遥感调查:原则方法系统[M]. 北京: 海洋出版社, 2005.
[5] Liu B Y, Su F Z. Remote sensing survey of coastal zones and islands in China:Principles and methods system[M]. Beijing: Ocean Press, 2005.
[6] 朱琳, 黄玉玲, 杨刚, 等. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2):50-60.doi:10.6046/zrzyyg.2022214.
[6] Zhu L, Huang Y L, Yang G, et al. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2):50-60.doi:10.6046/zrzyyg.2022214.
[7] Aiello A, Canora F, Pasquariello G, et al. Shoreline variations and coastal dynamics:A space-time data analysis of the jonian littoral,Italy[J]. Estuarine,Coastal and Shelf Science, 2013, 129:124-135.
[8] Dar I A, Dar M A. Prediction of shoreline recession using geospatial technology:A case study of Chennai coast,Tamil Nadu,India[J]. Journal of Coastal Research, 2009, 256:1276-1286.
[9] Romine B M, Fletcher C H. A summary of historical shoreline changes on beaches of Kauai,Oahu,and Maui,Hawaii[J]. Journal of Coastal Research, 2013, 288:605-614.
[10] Krien Y, Dudon B, Roger J, et al. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique[J]. Natural Hazards and Earth System Sciences, 2017, 17(9):1559-1571.
[11] Sun C, Li J, Liu Y, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256:112320.
[12] Hou X, Wu T, Hou W, et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences, 2016, 59(9):1791-1802.
[13] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
[13] Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[14] 傅姣琪, 陈超, 郭碧云. 缨帽变换的遥感图像水边线信息提取方法[J]. 测绘科学, 2019, 44(5):177-183.
[14] Fu J Q, Chen C, Guo B Y. A method of extracting shoreline information from remote sensing image based on tasseled cap transformation[J]. Science of Surveying and Mapping, 2019, 44(5):177-183.
[15] 李清泉, 卢艺, 胡水波, 等. 海岸带地理环境遥感监测综述[J]. 遥感学报, 2016, 20(5):1216-1229.
[15] Li Q Q, Lu Y, Hu S B, et al. Review of remotely sensed geo-environmental monitoring of coastal zones[J]. Journal of Remote Sensing, 2016, 20(5):1216-1229.
[16] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195:153-169.
[17] Chen C, Fu J, Zhang S, et al. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images[J]. Estuarine,Coastal and Shelf Science, 2019, 217:281-291.
[18] Bishop-Taylor R, Nanson R, Sagar S, et al. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery[J]. Remote Sensing of Environment, 2021, 267:112734.
[19] Xu N, Gong P. Significant coastline changes in China during 1991—2015 tracked by Landsat data[J]. Science Bulletin, 2018, 63(14):883-886.
[20] Cao W, Zhou Y, Li R, et al. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images[J]. Remote Sensing of Environment, 2020, 239:111665.
[21] Liu C, Xiao Y, Yang J. A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3735-3747.
[22] Li J, Ye M, Pu R, et al. Spatiotemporal change patterns of coastlines in Zhejiang Province,China,over the last twenty-five years[J]. Sustainability, 2018, 10(2):477.
[23] 陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006, 31(4):316-320.
[23] Chen Y H, Feng T, Shi P J, et al. Classification of remot sensing image based on object oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4):316-320.
[24] 詹雅婷, 朱利, 孙永华, 等. 海岸线遥感光谱角度—距离相似度生长模型自动化提取[J]. 遥感学报, 2017, 21(3):458-469.
[24] Zhan Y T, Zhu L, Sun Y H, et al. Automatic extraction of coastline via spectral angle-distance similarity growth model[J]. Journal of Remote Sensing, 2017, 21(3):458-469.
[25] Dang K B, Dang V B, Ngo V L, et al. Application of deep learning models to detect coastlines and shorelines[J]. Journal of Environmental Management, 2022, 320:115732.
[26] Sun S, Mu L, Feng R, et al. Quadtree decomposition-based Deep learning method for multiscale coastline extraction with high-resolution remote sensing imagery[J]. Science of Remote Sensing, 2024, 9:100112.
[27] Wei Z, Jiao X, Du Y, et al. The temporal variations in principal and shallow-water tidal constituents and their application in tidal level calculation:An example in Zhoushan archipelagoes with complex bathymetry[J]. Ocean and Coastal Management, 2023, 237:106516.
[28] Chen C, Liang J, Xie F, et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan Archipelago,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107:102711.
[29] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
[30] Mao Y, Harris D L, Xie Z, et al. Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181:385-399.
[31] Mateo-García G, Gómez-Chova L, Amorós-López J, et al. Multitemporal cloud masking in the Google Earth Engine[J]. Remote Sensing, 2018, 10(7):1079.
[32] Liu Y, Liu Y, Li J, et al. Trajectory of coastal wetland vegetation in Xiangshan Bay,China,from image time series[J]. Marine Pollution Bulletin, 2020, 160:111697.
[33] Guo R, Zhu X, Zhang C, et al. Analysis of change in maize plantation distribution and its driving factors in Heilongjiang Province,China[J]. Remote Sensing, 2022, 14(15):3590.
[34] Kauth R J, Thomas G S. The tasselled cap: A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]// LARS symposia.1976:159.
[35] Pelletier N, Millard K, Darling S. Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions[J]. Remote Sensing of Environment, 2023, 296:113747.
[36] Crist E P. A TM Tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3):301-306.
[37] 闫柏琨, 甘甫平, 印萍, 等. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3):53-63.doi:10.6046/zrzyyg.2022471.
[37] Yan B K, Gan F P, Yin P, et al. Remote sensing observations of tidal flats,shorelines,and aquacultural water bodies along coastal zones in China mainland during 1989—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3):53-63.doi:10.6046/zrzyyg.2022471.
[38] Ali Baig M H, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431.
[39] Jia M, Wang Z, Mao D, et al. Rapid,robust,and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255:112285.
[40] 程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2):348-357.
[40] Cheng L N, Zhong C R, Li X Y, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2):348-357.
[1] ZHANG Haojie, YANG Lijuan, SHI Tingting, WANG Shuai. Derivation of tasseled cap transformation coefficients for GF-6 WFV sensor data[J]. Remote Sensing for Natural Resources, 2024, 36(2): 105-115.
[2] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[3] CHEN Chao, CHEN Huixin, CHEN Dong, ZHANG Zili, ZHANG Xufeng, ZHUANG Yue, CHU Yanli, CHEN Jianyu, ZHENG Hong. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land & Resources, 2021, 33(2): 141-152.
[4] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[5] Kun LUO, Bo DING, Genyuan LONG. Analysis of Ningyuan Estuary coastline transition based on the multi-resource remote sensing image[J]. Remote Sensing for Land & Resources, 2018, 30(4): 187-192.
[6] WANG Jining, MENG Yonghui, ZHANG Lixia. Remote sensing monitoring and change analysis of Yellow River Estuary coastline in the past 42 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 188-193.
[7] YANG Changkun, LIU Zhaoqin, WANG Chongchang, LIU Bin, PENG Man. Spatial change analysis of the coastal zone of Liaodong Bay from 2001 to 2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 150-157.
[8] LIU Pengcheng. Feature extraction of coastline contour based on level set theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 75-79.
[9] ZHANG Xukai, ZHANG Xia, YANG Banghui, ZHUANG Zhi, SHANG Kun. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 91-97.
[10] ZHU Junfeng, WANG Gengming, ZHANG Jinlan, HUANG Tielan. Remote sensing investigation and recent evolution analysis of Pearl River delta coastline[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 130-137.
[11] ZHANG Yu, WANG Ranghui. Predictive simulation of the Fangchenggang coastline based on CA model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 149-155.
[12] LI Xiumei, YUAN Chengzhi, LI Yueyang. Remote sensing monitoring and spatial-temporal variation of Bohai Bay coastal zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 156-163.
[13] ZHU Changming, ZHANG Xin, LUO Jiancheng, LI Wanqing, YANG Jiwei. Automatic extraction of coastline by remote sensing technology based on SVM and auto-selection of training samples[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 69-74.
[14] OU Yang-Yue, ZHONG Jin-Song. A REVIEW OF COASTLINE DETECTION ON SAR IMAGERY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 1-3.
[15] JIANG Yi, LI Jian-fen, KANG Hui, ZHONG Xin-bao. A REMOTE SENSING ANALYSIS OF COASTLINE CHANGES ALONG THE BOHAI BAY MUDDY COAST IN THE PAST130 YEARS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(4): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech