Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 105-115     DOI: 10.6046/zrzyyg.2022465
|
Derivation of tasseled cap transformation coefficients for GF-6 WFV sensor data
ZHANG Haojie1(), YANG Lijuan1,2, SHI Tingting2,3, WANG Shuai1()
1. School of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
2. Institute of Remote Sensing Information Engineering, Fuzhou University, Fuzhou 350108, China
3. School of Economics and Management of Minjiang University, Fuzhou 350108, China
Download: PDF(15687 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Tasseled cap transformation (TCT), one of the most common methods in image enhancement, has been extensively applied in remote sensing. However, high-resolution satellite sensors (like GF-6 WFV) usually lack short-wave infrared bands, leading to distorted wetness components in TCT coefficients obtained using the conventional Gram-Schmidt (G-S) orthogonalization method. Hence, this study selected 12 GF-6 WFV images covering different regions, temporal phases, and seasons, as well as six synchronous Landsat8 images for wetness component regression, determining the wetness component coefficient of the GF-6 WFV sensor. Furthermore, it employed the inversed G-S algorithm to deduce the brightness, greenness, and other components, deriving the TCT coefficient of the GF-6 WFV sensor. This study found that: ①Adjusting the derivation order of the wetness component in TCT (that is, the derivation of the wetness component comes before that of other components like brightness and greenness) allows more effective derivation of the TCT coefficient of the GF-6 WFV sensor, avoiding the distortion of the wetness component; ②The TCT components of the GF-6 WFV sensor exhibited stable characteristics, with surface features displaying a typical “tasseled cap” distribution in the feature plane composed by various TCT components; ③Despite the differences in band setting and spectral response, GF-6 WFV and Landsat8 OLI sensors manifested high consistency in corresponding TCT components, with a correlation coefficient of up to 0.8.

Keywords GF-6      tasseled cap transformation      Landsat8      Gram-Schmid orthogonalization      wetness component     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haojie ZHANG
Lijuan YANG
Tingting SHI
Shuai WANG
Cite this article:   
Haojie ZHANG,Lijuan YANG,Tingting SHI, et al. Derivation of tasseled cap transformation coefficients for GF-6 WFV sensor data[J]. Remote Sensing for Natural Resources, 2024, 36(2): 105-115.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022465     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/105
序号 所属地区 地点 成像日期 GF-6景序列号 Landsat8列/行 影像用途
1 中国东北 辽宁省朝阳市北票市 2021/10/27 482807 121/031
2 中国东北 河北省衡水市冀州区 2021/11/26 490462 123/034
3 中国中部 江苏省南京市溧水区 2020/02/20 303336 120/038
4 中国中部 贵州省贵阳市花溪区 2020/11/14 385098 124/041 实验影像
5 中国东部 浙江省杭州市建德市 2021/08/30 466717
6 中国南部 广西壮族自治区河池市宜州区 2021/01/15 402120
7 中国西北 新疆维吾尔自治区阿拉尔市 2021/09/18 472503
8 中国北部 山东省济南市历下区 2019/08/17 247481 123/034
9 中国中部 湖北省荆门市东宝区 2021/09/21 473310
10 中国东部 安徽省黄山市徽州区 2020/04/09 320284 验证影像
11 中国南部 广西壮族自治区贺州市钟山县 2022/03/08 517213
12 中国西北 新疆维吾尔自治区阿克苏地区阿克苏市 2019/01/29 178877 147/031
Tab.1  List of GF-6 and Landsat8 data sources
Fig.1  Spectral curves of different types of ground objects
序号 变换分量 蓝光 绿光 红光 近红外 红边1 红边2 紫光 黄光
1 亮度 0.248 6 0.323 1 0.346 4 0.541 6 0.345 0 0.438 1 0.051 9 0.327 0
2 绿度 -0.240 4 -0.332 6 -0.380 8 0.560 4 -0.189 0 0.431 5 -0.086 7 -0.378 2
3 湿度 0.123 2 0.386 1 -0.512 6 -0.205 2 -0.432 0 0.338 6 -0.189 9 0.440 0
4 蓝度 0.723 2 -0.002 3 -0.220 6 0.269 6 -0.246 7 -0.305 5 0.420 1 -0.157 6
5 黄度 -0.080 8 0.178 4 0.114 5 -0.381 3 -0.050 8 0.506 2 0.658 0 -0.333 7
6 橙度 0.004 7 -0.037 5 0.007 0 0.005 4 0.012 5 -0.010 9 -0.013 6 0.009 1
7 灰度 0.145 8 0.061 0 -0.583 3 -0.162 2 0.766 7 0.035 2 -0.028 0 -0.136 0
8 第8分量 -0.528 1 0.106 1 -0.264 9 0.269 4 0.053 1 -0.309 5 0.554 4 0.401 5
Tab.2  GF-6 WFV tasseled cap transformation coefficients
Fig.2  Original images and tasseled cap transformation components
Fig.3  Theoretical distribution of typical ground objects on two-dimensional plane
Fig.4  Comparison of two-dimensional scatterplot distributions of tasseled cap transformation results
同步影像 缨帽变换分量 R RMSE
贵阳市 亮度 0.857 0.051 7
绿度 0.860 0.022 6
湿度 0.751 0.034 7
济南市 亮度 0.876 0.042 7
绿度 0.853 0.035 6
湿度 0.773 0.034 2
Tab.3  Synchronous image verification of GF-6 and Landsat8
卫星传感器 前2个
分量/%
前3个
分量/%
第3
分量/%
参考文献
IKONOS 98.3 99.8 1.5 文献[23]
QuickBird-2 98.3 99.7 1.4 文献[12]
CBERS-02B 98.0 文献[16]
HJ-1 A/B 98.0 99.9 1.9 文献[17]
GF-1 WFV2 97.3 98.9 1.6 文献[4]
GF-6 WFV 97.4 98.3 0.9 本文
Tab.4  Total variance explained by the first two or three components
序号 变换分量 蓝光 绿光 红光 近红外 红边1 红边2 紫光 黄光
1 亮度 0.273 7 -0.256 1 0.262 0 0.741 6 0.093 1 6.565 4 0.134 4 -0.484 1
2 绿度 0.221 0 -0.268 9 -0.179 2 -0.095 5 -0.529 9 -26.740 1 0.107 2 -0.072 9
3 湿度 0.346 0 -0.380 6 -0.514 6 -0.221 0 0.112 0 -0.093 8 -0.583 2 -0.265 5
4 蓝度 0.517 2 0.575 6 -0.340 1 0.247 4 -0.550 4 -6.381 9 -0.151 2 0.226 7
5 黄度 0.353 9 -0.194 6 -0.382 6 -0.238 5 0.011 1 2.337 0 0.762 7 0.068 8
6 橙度 0.470 8 0.411 1 0.520 0 -0.275 6 0.735 5 8.582 8 0.020 4 -0.252 0
7 灰度 0.077 3 -0.102 5 -0.050 0 0.443 2 0.833 4 6.620 0 -0.039 4 0.598 7
8 第8分量 0.392 3 -0.419 0 0.801 2 -0.098 0 0.118 9 17.087 9 -0.165 5 0.515 9
Tab.5  Inverse tasseled cap transformation coefficients of GF-6 WFV
Fig.5  Comparison of original images and tasseled cap transformation fusion result
[1] 陈超, 江涛, 刘祥磊. 基于缨帽变换的遥感图像融合方法研究[J]. 测绘科学, 2009, 34(3):105-106,163.
[1] Chen C, Jiang T, Liu X L. Research on remote sensing image fusion methods based on tasseled cap transformation[J]. Science of Surveying and Mapping, 2009, 34(3):105-106,163.
[2] 陈超, 何新月, 傅姣琪, 等. 基于缨帽变换的农田洪水淹没范围遥感信息提取[J]. 武汉大学学报(信息科学版), 2019, 44(10):1560-1566.
[2] Chen C, He X Y, Fu J Q, et al. A method of flood submerging area extraction for farmland based on tasseled cap transformation from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1560-1566.
[3] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
[3] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[4] 王帅, 徐涵秋, 施婷婷. GF-1 WFV2传感器数据的缨帽变换系数反演[J]. 地球科学进展, 2018, 33(6):641-652.
doi: 10.11867/j.issn.1001-8166.2018.06.0641
[4] Wang S, Xu H Q, Shi T T. Retrieval of tasseled cap transformation coefficients for GF-1 WFV2 sensor data[J]. Advances in Earth Science, 2018, 33(6):641-652.
doi: 10.11867/j.issn.1001-8166.2018.06.0641
[5] Kauth R J, Thomas G S. The tasselled cap:A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]// LARS Symposia, 1976:159.
[6] Crist E P, Cicone R C. Application of the tasseled cap concept to simulated thematic mapper data[J]. Photogrammetric Engineering & Remote Sensing, 1984, 50(3):343-352.
[7] Huang C, Wylie B, Yang L, et al. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance[J]. International Journal of Remote Sensing, 2002, 23(8):1741-1748.
[8] Baig M H A, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431.
[9] Liu Q, Liu G, Huang C, et al. A tasseled cap transformation for Landsat 8 OLI TOA reflectance images[C]// Geoscience and Remote Sensing Symposium.IEEE, 2014:541-544.
[10] Liu Q, Liu G, Huang C, et al. Comparison of tasselled cap transformations based on the selective bands of Landsat8 OLI TOA reflectance images[J]. International Journal of Remote Sensing, 2015, 36(2):417-441.
[11] 李博伦, 遆超普, 颜晓元. Landsat8陆地成像仪影像的缨帽变换推导[J]. 测绘科学, 2016, 41(4):102-107.
[11] Li B L, Ti C P, Yan X Y. Study of derivation of tasseled cap transformation for Landsat8 OLI images[J]. Science of Surveying and Mapping, 2016, 41(4):102-107.
[12] Yarbrough L D, Easson G, Kuszmaul J. QuickBird 2 tasseled cap transform coefficients:A comparison of derivation methods[C]// Pecora 16 Global Priorites in Land Remote Sensing,Sioux Falls,South Pakota, 2005, 16:23-27.
[13] Verdin J, Eckhardt D, Lyford G. Evaluation of SPOT imagery for monitoring irrigated lands[C]// Proceedings International Conference on SPOT 1 Image Utilization,Assessment,Results p81-91 (SEEN88-2834622-43),Paris, 1987,
[14] Silva D A. Determination of ‘tasseled cap’ transformation parameters for images obtained by the SPOT satellite[C]// International Symposium on Remote Sensing of Environment,24th,Rio de Janeiro,Brazil, 1992:291-300.
[15] Lobser S E, Cohen W B. MODIS tasselled cap:Land cover characteristics expressed through transformed MODIS data[J]. International Journal of Remote Sensing, 2007, 28(22):5079-5101.
[16] Sheng L, Huang J F, Tang X L. A tasseled cap transformation for CBERS-02B CCD data[J]. Journal of Zhejiang University (Science B), 2011, 12(9):780-786.
[17] Chen C,Tang, Bian Z. Tasseled cap transformation for HJ-1A/B charge coupled device images[J]. Journal of Applied Remote Sensing, 2012, 6(1):063575.
[18] 施婷婷, 徐涵秋, 王帅. ZY-3 MUX传感器数据的缨帽变换系数推导[J]. 遥感学报, 2019, 23(3):514-525.
[18] Shi T T, Xu H Q, Wang S. Derivation of tasselled cap transformation coefficients for ZY-3 MUX sensor data[J]. Journal of Remote Sensing, 2019, 23(3):514-525.
[19] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5):893-903.
[20] Crist E P, Kauth R J. The tasseled cap de-mystified[J]. Photogrammetric Engineering and Remote Sensing, 1986,52.
[21] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing, 1977, 43:1541-1552.
[22] Jackson R D. Spectral indices in N-Space[J]. Remote Sensing of Environment, 1983, 13(5):409-421.
[23] Horne J H. A tasseled cap transformation for IKONOS images[C]// ASPRS 2003 Annual Conference Proceedings.ASPRS, 2003.
[1] FENG Qian, ZHANG Jiahua, DENG Fan, WU Zhenjiang, ZHAO Enling, ZHENG Peixin, HAN Yang. A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm[J]. Remote Sensing for Natural Resources, 2024, 36(2): 39-49.
[2] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[3] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[4] YAN Han, ZHANG Yi. County-level natural resource survey in western China based on both GF-6 images and the third national land resource survey results[J]. Remote Sensing for Natural Resources, 2023, 35(2): 277-286.
[5] XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 41-48.
[6] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[7] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[8] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[9] WANG Renjun, LI Dongying, LIU Baokang. A water body identification model for lakes in Hoh Xil based on GF-6 WFV satellite data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 80-87.
[10] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[11] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[12] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[13] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[14] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[15] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech