|
|
|
Abstract The Loess Plateau is recognized as a typical climate-sensitive and ecologically vulnerable region in China. Understanding the spatiotemporal characteristics and potential driving factors of vegetation dynamics in different dry/wet climate zones within the Loess Plateau holds critical significance for the conservation and management of regional ecosystems. Based on the kernel normalized difference vegetation indices (kNDVIs) of the Loess Plateau from 2000 to 2022, this study investigated the spatiotemporal patterns of vegetation dynamics in different dry/wet climate zones within the Loess Plateau using the coefficient of variation and trend analysis. Employing the optimal parameter-based geographical detector model, this study accurately and scientifically identified the driving factors and ranges of vegetation dynamics under the spatial scale and zoning effect, effectively addressing the challenge of spatial heterogeneity. The results indicate that the average kNDVI of the Loess Plateau presented a spatial distribution pattern characterized by low values in the northwest and high values in the southeast. In terms of vegetation dynamics, 91.57% of the Loess Plateau showed an upward trend, with the semi-arid climate zone accounting for the highest proportion (60.41%). Different driving factors in the Loess Plateau corresponded to varying optimal dispersion methods and optimal interval breakpoints. Under the optimal zoning effect, low temperature and high rainfall were identified as the primary conditions for vegetation growth. The different ranges and types of driving factors exerted different effects on the spatial distribution of vegetation dynamics. The optimal parameter-based geographical detector model demonstrates that rainfall and land use type constituted the principal driving factors of the Loess Plateau, accounting for 65.45% of the total explanatory power. The q value (0.69) of the interaction between the two driving factors was higher than the q values of interactions between other factors. This study provides a comprehensive insight into the response mechanisms of vegetation dynamics under natural and human factors, thereby guiding the sustainable development of regional ecosystems.
|
| Keywords
vegetation dynamics
kernel normalized vegetation index (kNDVI)
dry-wet climate zones
geographic detector model with optimal parameters
Loess Plateau
|
|
|
|
Issue Date: 31 December 2025
|
|
|
| [1] |
张瑞, 李琴, 勇心意, 等. 末次冰盛期以来东北地区古植被定量重建及其气候响应[J]. 第四纪研究, 2024, 44(3):805-822.
|
| [1] |
Zhang R, Li Q, Yong X Y, et al. Quantitative reconstruction of pa-leovegetation history in Northeast China and its response to climate change since the Last Glacial Maximum[J]. Quaternary Sciences, 2024, 44(3):805-822.
|
| [2] |
Higgins S I, Conradi T, Muhoko E. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends[J]. Nature Geo-science, 2023, 16(2):147-153.
|
| [3] |
董文洁, 毛曦, 路文娟, 等. 黄河流域气候因子与NDVI相关性的长时序空间异质性研究[J]. 测绘科学, 2024, 49(2):134-142.
|
| [3] |
Dong W J, Mao X, Lu W J, et al. Long-term spatial heterogeneity of correlation between climatic factors and NDVI in the Yellow River Basin[J]. Science of Surveying and Mapping, 2024, 49(2):134-142.
|
| [4] |
Liu H Y, Zhang M Y, Lin Z S, et al. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China[J]. Agricultural and Forest Meteorology, 2018,256:10-21.
|
| [5] |
冶兆霞, 张洪波, 杨志芳, 等. 陕北黄土高原气象要素对植被覆盖的空间分异影响及风险探测[J]. 生态学报, 2024, 44(6):2379-2395.
|
| [5] |
Ye Z X, Zhang H B, Yang Z F, et al. Spatial differentiation effects and risk detection of meteorological elements to vegetation cover on the Loess Plateau of northern Shaanxi[J]. Acta Ecologica Sinica, 2024, 44(6):2379-2395.
|
| [6] |
协子昂, 张超, 冯绍元, 等. 植被物候遥感监测研究进展[J]. 遥感技术与应用, 2023, 38(1):1-14.
doi: 10.11873/j.issn.1004-0323.2023.1.0001
|
| [6] |
Xie Z A, Zhang C, Feng S Y, et al. Reviews of methods for vegetation phenology monitoring from remote sensing data[J]. Remote Sensing Technology and Application, 2023, 38(1):1-14.
|
| [7] |
Li Y S, Ma J Y, Zhang Y J. Image retrieval from remote sensing big data:A survey[J]. Information Fusion, 2021,67:94-115.
|
| [8] |
陈树新, 刘炳杰, 王海熠, 等. 结合可见光植被指数和分水岭算法的单木树冠信息提取[J]. 遥感技术与应用, 2024, 39(1):34-44.
doi: 10.11873/j.issn.1004-0323.2024.1.0034
|
| [8] |
Chen S X, Liu B J, Wang H Y, et al. Extraction of individual tree crown based on UAV tilt photogrammetry[J]. Remote Sensing Technology and Application, 2024, 39(1):34-44.
|
| [9] |
宗慧琳, 张晓伦, 袁希平, 等. 利用GEE进行1990—2022年小江流域生态环境质量时空格局与演变趋势分析[J]. 环境科学, 2024, 45(7):4122-4136.
|
| [9] |
Zong H L, Zhang X L, Yuan X P, et al. Xiaojiang river basin ecological environmental quality spatiotemporal pattern and evolutio-nary trend analysis using GEE from 1990 to 2022[J]. Environmental Science, 2024, 45(7):4122-4136.
|
| [10] |
刘一, 郑南山, 丁锐, 等. 基于机器学习的多频多星GNSS-IR模式NDVI反演研究[J]. 中国矿业大学学报, 2023, 52(5):1014-1021.
|
| [10] |
Liu Y, Zheng N S, Ding R, et al. NDVI inversion of multi-frequency and multi-satellite GNSS-IR model based on machine learning[J]. Journal of China University of Mining and Technology, 2023, 52(5):1014-1021.
|
| [11] |
Jin H Y, Chen X H, Wang Y M, et al. Spatio-temporal distribution of NDVI and its influencing factors in China[J]. Journal of Hydrology, 2021,603:127129.
|
| [12] |
Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425797001041
|
| [13] |
Aklilu T A, Gessesse A B. Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem[J]. Spatial Information Research, 2021, 29(1):109-121.
doi: 10.1007/s41324-020-00339-5
|
| [14] |
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021, 7(9):eabc7447.
|
| [15] |
Wang X, Biederman J A, Knowles J F, et al. Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics[J]. Remote Sensing of Environment, 2022,270:112858.
|
| [16] |
刘明蕊, 刘世婷, 马春燕, 等. 草地植物和土壤对温度和降水变化的响应研究进展[J]. 生态学杂志, 2024, 43(12):3787-3796.
|
| [16] |
Liu M R, Liu S T, Ma C Y, et al. Research progress of the responses of grassland plants and soilto the variation of temperature and precipitation[J]. Chinese Journal of Ecology, 2024, 43(12):3787-3796.
|
| [17] |
Yang S K, Liu J, Wang C H, et al. Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin,Central China[J]. Ecological Indicators, 2022,145:109586.
|
| [18] |
胡蓉, 董灵波. 黑龙江流域植被覆盖度时空动态及其对气候变化的响应[J]. 应用生态学报, 2024, 35(6):1518-1524.
doi: 10.13287/j.1001-9332.202406.027
|
| [18] |
Hu R, Dong L B. Temporal and spatial variations of vegetation co-verage in Heilongjiang Basin and its responses to climate change[J]. Chinese Journal of Applied Ecology, 2024, 35(6):1518-1524.
|
| [19] |
Li Q R, Gao X, Li J, et al. Nonlinear time effects of vegetation response to climate change:Evidence from Qilian Mountain National Park in China[J]. Science of the Total Environment, 2024,933:173149.
|
| [20] |
牛剑龙, 陈国坤, 黄义忠, 等. 近20 a云南文山州植被覆盖动态变化及其驱动因素[J]. 中国水土保持科学(中英文), 2022, 20(4):118-125.
|
| [20] |
Niu J L, Chen G K, Huang Y Z, et al. Dynamic change of vegetation cover and its driving factors in Wenshan of Yunnan over the past 20 years[J]. Science of Soil and Water Conservation, 2022, 20(4):118-125.
|
| [21] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
|
| [21] |
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
|
| [22] |
Zhao X Y, Tan S C, Li Y P, et al. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model,China[J]. Ecological Indicators, 2024,158:111529.
|
| [23] |
汪宙峰, 郑博, 贺相綦, 等. 基于参数最优地理探测器的西藏冰湖时空变化与影响因素研究[J]. 冰川冻土, 2023, 45(6):1950-1960.
doi: 10.7522/j.issn.1000-0240.2023.0149
|
| [23] |
Wang Z F, Zheng B, He X Q, et al. Spatial-temporal variations and influencing factors of glacial lakes in Tibet based on Optimal Parameters-Based Geographical Detector[J]. Journal of Glaciology and Geocryology, 2023, 45(6):1950-1960.
|
| [24] |
郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1):3-12.
|
| [24] |
Zheng J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1):3-12.
doi: 10.11821/xb201001002
|
| [25] |
Wang Q, Moreno-Martínez Á, Muñoz-Marínez J, et al. Estimation of vegetation traits with kernel NDVI[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023,195:408-417.
|
| [26] |
黄对, 彭安帮, 刘九夫, 等. 淮河中上游植被变化及其对气象因素的多时空尺度响应[J]. 水土保持研究, 2023, 30(3):268-278.
|
| [26] |
Huang D, Peng A B, Liu J F, et al. Multi temporal and spatial scale responses of vegetation dynamics to climate factors[J]. Research of Soil and Water Conservation, 2023, 30(3):268-278.
|
| [27] |
Jiang W G, Yuan L H, Wang W J, et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators, 2015,51:117-126.
|
| [28] |
袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013, 33(24):7798-7806.
|
| [28] |
Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010[J]. Acta Ecologica Sinica, 2013, 33(24):7798-7806.
|
| [29] |
沈爱红, 佘洁, 石云, 等. 2001—2020年贺兰山东麓荒漠草原植被覆盖度演变[J]. 中国沙漠, 2024, 44(3):308-320.
doi: 10.7522/j.issn.1000-694X.2024.00035
|
| [29] |
Shen A H, She J, Shi Y, et al. Changes in vegetation coverage of desert grasslands in the eastern foothills of Helan Mountains in 2001-2020[J]. Journal of Desert Research, 2024, 44(3):308-320.
doi: 10.7522/j.issn.1000-694X.2024.00035
|
| [30] |
Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geo-graphical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis:Cases with different types of spatial data[J]. GIScience and Remote Sensing, 2020, 57(5):593-610.
doi: 10.1080/15481603.2020.1760434
url: https://www.tandfonline.com/doi/full/10.1080/15481603.2020.1760434
|
| [31] |
Wang J F, Hu Y. Environmental health risk detection with GeogDetector[J]. Environmental Modelling and Software, 2012,33:114-115.
|
| [32] |
Zhang W, Wang L C, Xiang F F, et al. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin,China[J]. Ecological Indicators, 2020,110:105892.
|
| [33] |
马扶林, 刘小伟, 朵莹, 等. 日尺度下水热因子变化对青藏高原高寒草原生产力的影响特征[J]. 生态学报, 2023, 43(9):3719-3728.
|
| [33] |
Ma F L, Liu X W, Duo Y, et al. Effects of daily variation of hydro-thermal factors on alpine grassland productivity on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2023, 43(9):3719-3728.
|
| [34] |
韩磊, 曹鑫鑫, 朱会利, 等. 基于特征分区的陕北黄土高原植被覆盖变化及其驱动因素[J]. 生态学报, 2023, 43(20):8564-8577.
|
| [34] |
Han L, Cao X X, Zhu H L, et al. Change of vegetation coverage and driving factor in the North Shaanxi Loess Plateau based on characteristic zoning[J]. Acta Ecologica Sinica, 2023, 43(20):8564-8577.
|
| [35] |
贺军奇, 魏燕, 高万德, 等. 毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2022, 45(5):1523-1533.
doi: 10.12118/j.issn.1000-6060.2021.017
|
| [35] |
He J Q, Wei Y, Gao W D, et al. Temporal and spatial variation of vegetation NDVI and its response to climatic factors in the sout-heastern margin of Mu Us Sandy Land[J]. Arid Land Geography, 2022, 45(5):1523-1533.
|
| [36] |
王雄, 张翀, 李强. 黄土高原植被覆盖与水热时空通径分析[J]. 生态学报, 2023, 43(2):719-730.
|
| [36] |
Wang X, Zhang C, Li Q. Path analysis between vegetation coverage and climate factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2023, 43(2):719-730.
|
| [37] |
Jiao W, Wang L, Smith W K, et al. Observed increasing water constraint on vegetation growth over the last three decades[J]. Nature Communications, 2021, 12(1):3777.
doi: 10.1038/s41467-021-24016-9
pmid: 34145253
|
| [38] |
李卓忆, 杨庆, 马柱国, 等. 中国北方干旱半干旱区植被对气候变化和人类活动的响应[J]. 大气科学, 2024, 48(3):859-874.
|
| [38] |
Li Z Y, Yang Q, Ma Z G, et al. Responses of vegetation to climate change and human activities in the arid and semiarid regions of northern China[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(3):859-874.
|
| [39] |
姚楠, 董国涛, 薛华柱. 基于Google Earth Engine的黄土高原植被覆盖度时空变化特征分析[J]. 水土保持研究, 2024, 31(1):260-268.
|
| [39] |
Yao N, Dong G T, Xue H Z. Analysis on the characteristics of the spatiotemporal change in vegetation coverage on the Loess Plateau using the Google Earth Engine[J]. Research of Soil and Water Conservation, 2024, 31(1):260-268.
|
| [40] |
图纳热, 红梅, 叶贺, 等. 降水变化和氮沉降对荒漠草原土壤丛枝菌根真菌群落结构的影响[J]. 土壤, 2023, 55(6):1251-1260.
|
| [40] |
Tu N R, Hong M, Ye H, et al. Effects of precipitation change and nitrogen deposition on soil arbuscular mycorrhizal fungi(AMF) community structure in desert steppe[J]. Soils, 2023, 55(6):1251-1260.
|
| [41] |
Ren H Y, Wen Z M, Liu Y Y, et al. Vegetation response to changes in climate across different climate zones in China[J]. Ecological Indicators, 2023,155:110932.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|