Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 240-248     DOI: 10.6046/gtzyyg.2020087
|
The eco-barrier effect of Qinling Mountain on aerosols
MENG Qing1,2(), BAI Hongying1,2(), ZHAO Ting1,2, GUO Shaozhuang1,2, QI Guizeng1,2
1. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
2. Key Laboratory of Surface System and Environmental carrying Capacity of Shaanxi Province, Northwest University, Xi’an 710127, China
Download: PDF(4709 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The ecological barrier effect of Qinling Mountain on aerosol optical depth (AOD) and the relationship between aerosol and terrain were studied by spatial analysis and Kernel Density Estimation using AOD retrievals obtained from the Terra-MODIS Collection 6.1 Level-2 aerosol product at 3 km spatial resolution from January 2002 to December 2017. The results showed an obvious effect of the ecological barrier effect of the Qinling Mountain on atmospheric aerosol. An annual average AOD value at the northern foot of the Qinling Mountain was higher than that at the southern foot of the Qinling Mountain in the past 16 years. High-values of AOD were in Guanzhong urban agglomeration at the northern foot of Qinling Mountain. By comparing and analyzing the changes of AOD along different longitudes of Qinling Mountain, obvious differences were observed in AOD between the south and the north of Qinling Mountain in terms of extreme, mean and special values, which showed the characteristics of “north-south differentiation” and further illustrates the obvious barrier effect of Qinling Mountain on AOD. AOD over the Qinling Mountain showed a significant elevation stratification effect, i.e., a logarithmic downward trend with the increase of elevation. Under the elevation of 2 000 m(mutation point), AOD showed a significant accelerated downward trend with a rate of 0.001/1 000 m. Over the elevation of 2 000 m, AOD showed a significant uniform downward trend with a rate close to zero. The results also showed that the distribution of AOD varied greatly in different terrain of the Qinling Mountain. The AOD agglomeration centers in the plain areas were located at 330~420 m above mean sea level (a.s.l.) , where 79% of AOD were concentrated between 0.35 and 0.71, and high-value AOD (AOD =0.7) agglomeration centers were located between 330 and 340 m. The AOD agglomeration centers in the low-mountains areas were located at 900~1 000 m a.s.l., and 79% of AOD were concentrated between 0.15 and 0.32. The AOD agglomeration centers in middle-mountains areas were located at 1 000~1 400 m a.s.l., and about 60% of AOD were concentrated between 0.19 and 0.3. AOD presented a foggy distribution under plain, low-mountain and middle-mountain areas. AOD in high-mountain areas presented a sporadic point distribution without concentration centers. On the northern slope of Qinling Mountain, the elevation distribution of AOD concentration center was 500 m, while that of the southern slope was about 1 100~1 200 m. The AOD concentration center value (AOD=0.6) on the northern slope was higher than that on the southern slope (AOD=0.22). The AOD decreased logarithmically with the elevation of the northern slope of Qinling Mountain, but the decreasing trend of the southern slope was not obvious.

Keywords aerosol optical depth      Qinling Mountain      barrier function      terrain classification      ecological barrier function     
ZTFLH:  X87  
Corresponding Authors: BAI Hongying     E-mail: qingmengmq@163.com;hongyingbai@163.com
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing MENG
Hongying BAI
Ting ZHAO
Shaozhuang GUO
Guizeng QI
Cite this article:   
Qing MENG,Hongying BAI,Ting ZHAO, et al. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020087     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/240
Fig.1  Location of the Qinling Mountains
Fig.2  Spatial distribution of AOD in each year during 2002-2017 over the southern and northern slopes of the Qinling Mountains
年份 北麓
AOD值
南麓
AOD值
年份 北麓
AOD值
南麓
AOD值
2002年 0.35 0.26 2010年 0.39 0.26
2003年 0.31 0.23 2011年 0.40 0.28
2004年 0.32 0.23 2012年 0.35 0.25
2005年 0.35 0.23 2013年 0.37 0.29
2006年 0.41 0.29 2014年 0.32 0.23
2007年 0.42 0.30 2015年 0.35 0.23
2008年 0.35 0.25 2016年 0.31 0.21
2009年 0.36 0.27 2017年 0.27 0.19
Tab.1  Comparison of annual average AOD between 2002 and 2017 over the southern and northern slopes of the Qinling Mountains
Fig.3  Average AOD profile along different longitudes for 16 years over the Qinling Mountains
经度/
°E
海拔/
m
北坡
AOD值
南坡
AOD值
经度/
°E
海拔/
m
北坡
AOD值
南坡
AOD值
107 834 0.30 0.20 1 170 0.17 0.20
978 0.27 0.23 1 489 0.15 0.20
1 079 0.24 0.20 1 794 0.17 0.18
1 266 0.21 0.25 109 524 0.58 0.25
1 565 0.19 0.19 626 0.50 0.25
108 446 0.58 0.18 1 059 0.38 0.29
545 0.53 0.39 1 653 0.20 0.18
639 0.48 0.24 110 687 0.52 0.28
727 0.41 0.36 1 098 0.36 0.26
1 038 0.30 0.24
Tab.2  Comparison of AOD values along different longitudes at the same altitude on the northern and southern slopes of the Qinling Mountains
Fig.4  Variation of AOD with Altitude over the Qinling Mountains during 16 Years
Fig.5  Topographic classification Map over the Qinling Mountains
Fig.6  Distribution of AOD under four topographical conditions over the Qinling Mountains
Fig.6-2  Distribution of AOD under four topographical conditions over the Qinling Mountains
Fig.7  Distribution of AOD at northern and southern slopes over the Qinling Mountains
[1] 潘韬, 吴绍洪, 何大明, 等. 纵向岭谷区地表格局的生态效应及其区域分异[J]. 地理学报, 2012,67(1):13-26.
[1] Pan T, Wu S H, He D M, et al. Ecological effects and regional differentiation of land surface pattern in longitudinal range-valley region[J]. Journal of Geography, 2012,67(1):13-26.
[2] 吴绍洪, 潘韬, 曹杰, 等. 西南纵向岭谷地形对季风的“通道—阻隔”作用[J]. 地理研究, 2012,31(1):1-13.
[2] Wu S H, Pan T, Cao J, et al. The “channel-blocking” effect of southwestern longitudinal ridge and valley topography on monsoon[J]. Geographic Research, 2012,31(1):1-13.
[3] 何云玲, 张一平. 纵向岭谷区“通道-阻隔”作用下气温和降雨的空间分布特征[J]. 山地学报, 2007(2):169-176.
[3] He Y L, Zhang Y P. Spatial distribution characteristics of air temperature and rainfall under “channel-blocking” effect in longitudinal ridge-valley region[J]. Journal of Mountain Science, 2007(2):169-176.
[4] 何奕萱, 易桂花, 张廷斌, 等. 红河流域“通道-阻隔”作用下2000—2014年植被EVI变化趋势与驱动力[J]. 生态学报, 2018,38(6):2056-2064.
[4] He Y X, Yi G H, Zhang T B, et al. Changes and driving forces of vegetation EVI in Honghe River basin from 2000 to 2014 under “passage-barrier” effect[J]. Acta Ecologica Sinica, 2018,38(6):2056-2064.
[5] 郝成元, 戴尔阜, 吴绍洪, 等. 纵向岭谷区南部“阻隔”作用及植被时空异质性研究[J]. 科学通报, 2006(s2):120-128.
[5] Hao C Y, Dai E F, Wu S D, et al. Study on “blocking” effect and spatial and temporal heterogeneity of vegetation in southern longitudinal range and valley area[J]. Science Bulletin, 2006(s2):120-128.
[6] Pan T, Wu S H, Dai E F, et al. Indicative significance of sporopollen spatial assemblages in longitudinal ridge and valley area of southwest China to barrier effect[J]. Journal of Geographical Sciences, 2009,19(6):660-670.
[7] 李阳兵, 张阳阳. 平行岭谷区建设用地格局演变扩展的通道与低山阻隔效应[J]. 地理研究, 2010,29(03):440-448.
[7] Li Y B, Zhang Y Y. Channels for evolution and expansion of construction land pattern in parallel ridge and valley area and barrier effect in low mountains[J]. Geographic Research, 2010,29(3):440-448.
[8] 高登义. 山地屏障与水汽通道综合作用初探——兼谈大香格里拉自然成因[J]. 高原气象, 2007(6):1305-1310.
[8] Gao D Y. Preliminary study on the comprehensive effect of mountain barrier and water vapor channel-also on the natural causes of Shangri-La[J]. Plateau Meteorology, 2007(6):1305-1310.
[9] 孟小绒. 秦岭山脉的强阻挡作用造成降雪结束预报失误[A].中国科学技术协会.节能环保和谐发展——2007中国科协年会论文集(二)[C]. 中国科学技术协会:中国科学技术协会学会学术部, 2007: 4.
[9] Meng X R. The strong blocking effect of Qinling Mountains caused the failure of snow end forecast[A].China Association of Science and Technology.Harmonious Development of Energy Conservation and Environmental Protection-Proceedings of 2007 China Association of Science and Technology Annual Meeting (2)[C]. China Association of Science and Technology:Academic Department of China Association of Science and Technology, 2007: 4.
[10] 陈志超, 郝成元, 刘昌华, 等. 伏牛山阻隔作用下水热因子、土地覆被与NPP的时空特征[J]. 生态环境学报, 2013,22(5):761-766.
[10] Chen Z C, Hao C Y, Liu C H, et al. Spatiotemporal characteristics of hydrothermal factors,land cover and NPP under blocking effect of Funiu Mountain[J]. Journal of Ecological Environment, 2013,22(5):761-766.
[11] 吴绍洪, 戴尔阜, 何大明. 我国西南纵向岭谷区环境与发展问题初步研究[J]. 地理科学进展, 2005(1):31-40.
[11] Wu S H, Dai E F, He D M. Preliminary study on environment and development in longitudinal range and valley area of southwest China[J]. Progress in Geographical Science, 2005(1):31-40.
[12] 何大明, 吴绍洪, 彭华, 等. 纵向岭谷区生态系统变化及西南跨境生态安全研究[J]. 地球科学进展, 2005(3):338-344.
[12] He D M, Wu S H, Peng H, et al. Study on ecosystem changes in longitudinal range-valley area and southwest cross-border ecological security[J]. Progress in Geoscience, 2005(3):338-344.
[13] 姜世中. 气象学与气候学[M]. 北京: 科学出版社, 2010: 15.
[13] Jiang S Z. Meteorology and Climatology[M]. Beijing: Science Press, 2010: 15.
[14] Ofipcc W G I. Climate change 2013:The physical science basis[J]. Contribution of Working, 2013,43(22):866-871.
[15] Kaiser D P, Qian Y. Decreasing trends in sunshine duration over China for 1954-1998:Indication of increased haze pollution[J]. Geophysical Research Letters, 2002,29(21):38-1-38-4.
[16] Crutzen P J. The background of an ozone researcher:A brief autobiography[M]// Paul J.Crutzen:A pioneer on atmospheric chemistry and climate change in the Anthropocene.Springer International Publishing 2016.
[17] Liao H, Adams P J, Chung S H, et al. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J] Journal of Geophysical Research Atmospheres, 2003, 108(D1):AAC-1-AAC1-23.
pmid: 11542933 url: https://www.ncbi.nlm.nih.gov/pubmed/11542933
[18] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[M]// Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change.DLR, 2007: 129-234.
[19] Rosenfiled D, Lohmann U, Raga G B, et al. Flood or drought:How do aerosols affect precipitation[J]. Science, 2008,321(5894):1309-1313.
doi: 10.1126/science.1160606 pmid: 18772428 url: https://www.ncbi.nlm.nih.gov/pubmed/18772428
[20] Li Z Q, Niu F, Fan J W, et al. Long-term impacts of aerosols on vertical development of cloud and precipitation[J]. Nature Geoscience, 2011,4:888-894.
[21] Tao W K, Chen J P, Li Z Q, et al. Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 2012,50(2):1-97.
[22] 汪安璞. 大气气溶胶研究新动向[J]. 环境化学, 1999(1):10-15.
[22] Wang A P. New Trends in atmospheric aerosol research[J]. Environmental Chemistry, 1999(1):10-15.
[23] Baumer D, Vogel B, Versick S, et al. Relationship of visibility,aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany[J]. Atmospheric Environment, 2008,42(5):989-998.
[24] Koren I, Martins J V. Measurement of the effect of amazon smoke on inhibition of cloud formation[J]. Science, 2004,303(5662):1342-1345.
pmid: 14988557 url: https://www.ncbi.nlm.nih.gov/pubmed/14988557
[25] Ramachandan S. Aerosol optical depth and fine mode fraction variations deduced from Moderate Resolution Imaging Spectroradiometer (MODIS) over four urban areas in India[J]. Journal of Geophysical Research Atmospheres, 2007,112(D16).
[26] Meng F, Cao C, Shao X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical depth over China in 2013[J]. Remote Sensing of Environment, 2015,163:61-69.
[27] He L, Wang L, Lin A, et al. What drives changes in aerosol properties over the Yangtze River Basin in past four decades?[J]. Atmospheric Environment, 2018,190.
[28] 刘状, 孙曦亮, 刘丹, 等. 2001—2017年中国北方省份气溶胶光学厚度的时空特征[J]. 环境科学学报, 2018,38(8):3177-3184.
[28] Liu Z, Sun X L, Liu D, et al. Temporal and spatial characteristics of aerosol optical thickness in northern provinces of China from 2001 to 2017[J]. Journal of Environmental Science, 2018,38(8):3177-3184.
[29] 吴国雄, 李占清, 符淙斌, 等. 气溶胶与东亚季风相互影响的研究进展[J]. 中国科学:地球科学, 2015,45(11):1609-1627.
[29] Wu G X, Li Z Q, Fu S B, et al. Research progress on interaction between aerosol and east asian monsoon[J]. Chinese Science:Geoscience, 2015,45(11):1609-1627.
[30] 张亮林, 潘竟虎, 张大弘. 基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018,38(11):4431-4439.
url: http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20180103004&flag=1
[30] Zhang L L, Pan J H, Zhang D H. Temporal and spatial distribution characteristics of aerosol optical thickness in China based on MODIS data[J]. Journal of Environmental Science, 2018,38(11):4431-4439.
[31] 俞海洋, 张杰, 李婷, 等. 2000—2013年北京及周边地区大气气溶胶光学厚度时空变化特征及气象影响因素分析[J]. 气象科学, 2018,38(4):512-522.
[31] Yu H Y, Zhang J, Li T, et al. Analysis on temporal and spatial variation characteristics of atmospheric aerosol optical thickness and meteorological influencing factors in Beijing and its surrounding areas from 2000 to 2013[J]. Meteorological Science, 2018,38(4):512-522.
[32] 徐小红, 余兴, 戴进. 气溶胶对秦岭山脉地形云降水的影响[J]. 气象, 2009,35(1):37-47.
[32] Xu X H, Yu X, Dai J. Effect of aerosol on topographic cloud precipitation in Qinling mountains[J]. Meteorology, 2009,35(1):37-47.
[33] 戴进, 余兴, Daniel Rosenfeld, 等. 秦岭地区气溶胶对地形云降水的抑制作用[J]. 大气科学, 2008(6):1319-1332.
[33] Dai J, Yu X, Daniel R, et al. Inhibitory effect of aerosol on topographic cloud precipitation in Qinling area[J]. Atmospheric Science, 2008(6):1319-1332.
[34] 杜川利, 余兴. 气溶胶和城市热岛效应对秦岭地区近50年气温序列影响分析[J]. 高原气象, 2013,32(5):1321-1328.
[34] Du C L, Yu X. Analysis of aerosol and urban heat island effect on temperature series in Qinling area in recent 50 years[J]. Plateau Meteorology, 2013,32(5):1321-1328.
[35] 马新萍. 秦岭林线及其对气候变化的响应[D]. 西安:西北大学, 2015.
[35] Ma X P. Qinling forest line and its response to climate change[D]. Xi'an:Northwest University, 2015.
[36] 王耀斌. 秦 岭(陕西段)生态资产时空变化特征及其驱动因素[D]. 西安:长安大学, 2018.
[36] Wang Y B. Spatial-temporal variation characteristics and driving factors of ecological assets in Qinling Mountains (Shaanxi Section)[D]. Xi’an:Chang’an University, 2018.
[37] 孟清, 白红英, 郭少壮. 基于Anusplin秦岭地区近50多年来的降水时空变化[J]. 水土保持研究, 2020,27(2):206-212.
[37] Meng Q, Bai H Y, Guo S Z. Temporal and spatial changes of precipitation in Qinling Mountains in recent 50 years based on Anusplin[J]. Soil and Water Conservation Research, 2020,27(2):206-212.
[38] 赵婷, 白红英, 邓晨晖, 等. 2000—2016年秦岭山地植被覆盖变化地形分异效应[J]. 生态学报, 2019,39(12):4499-4509.
[38] Zhao T, Bai H Y, Deng C H, et al. Topographic differentiation effect of vegetation cover change in Qinling Mountains from 2000 to 2016[J]. Acta Ecologica Sinica, 2019,39(12):4499-4509.
[39] 周旗, 卞娟娟, 郑景云. 秦岭南北1951-2009年的气温与热量资源变化[J]. 地理学报, 2011,( 9):1211-1218.
[39] Zhou Q, Bian J J, Zheng J Y. Temperature and heat resource changes in north and south Qinling mountains from 1951 to 2009[J]. Journal of Geography, 2011,( 9):1211-1218.
[40] 齐文娟, 杨晓梅. 江西省都昌县山地与平原植被界线提取[J]. 地球信息科学学报, 2017,19(4):559-569.
[40] Qi W J, Yang X M. Extraction of vegetation boundary between mountain and plain in duchang county,Jiangxi Province[J]. Journal of Geoscience, 2017,19(4):559-569.
[41] 白红英. 秦巴山区森林植被对环境变化的响应[M]. 北京: 科学出版社, 2014.
[41] Bai H Y. Responses of forest vegetation to environmental changes in Qinba mountain area[M]. Beijing: Science Press, 2014.
[42] Parzene. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962,33(3):1065-1076.
[43] 罗宇翔, 陈娟, 郑小波. 近10年中国大陆MODIS遥感气溶胶光学厚度特征[J]. 生态环境学报, 2012,21(5):876-883.
[43] Luo Y X, Chen J, Zheng X B. Characteristics of MODIS remote sensing aerosol optical thickness in mainland China in recent 10 years[J]. Journal of Ecological Environment, 2012,21(5):876-883.
[44] 王银牌, 喻鑫, 谢广奇. 中国近15年气溶胶光学厚度时空分布特征[J]. 中国环境科学, 2018,38(2):426-434.
[44] Wang Y P, Yu X, Xie G Q. Temporal and spatial distribution characteristics of aerosol optical thickness in China in recent 15 years[J]. China Environmental Science, 2018,38(2):426-434.
[1] WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020[J]. Remote Sensing for Natural Resources, 2022, 34(4): 225-234.
[2] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
[3] ZHANG Mingming, CHENG Dongbing, QI Jianhua, HU Jianchun, LUO Jing. Temporal and spatial distribution of aerosol optical depth in Chizhou based on satellite remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 147-155.
[4] XU Bin. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
[5] ZHAO Shaohua, WANG Qiao, YOU Daian, WANG Zhongting, ZHU Li, WAN Huawei. Application of high resolution satellites to environmental protection[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 1-7.
[6] FAN Dongfu, YANG Shuyun, WU Biwen, FAN Dongqing, WANG Jun, JIANG Bo, CHEN Xiaolong. Monitoring of biomass burning based on AOD[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 133-138.
[7] CHENG Chen, CHEN Jian, LI Xinhui. Retrieving aerosol optical depth over Nanjing City based on TM image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 90-96.
[8] XIA Li-Hua, WANG De-Hui, WANG Fang. RESEARCHES ON THE ADVANCED WARNING SYSTEM AND
ADVANCED WARNING GRADE OF THE PHOTOCHEMIC SMOG
POLLUTION IN GUANGZHOU CITY BASED ON MODIS DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech