Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 249-255     DOI: 10.6046/gtzyyg.2020066
|
Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province
FAN Jiazhi1,2(), LUO Yu1, TAN Shiqi3, MA Wen4, ZHANG Honghao5, LIU Fulai2()
1. China Meteorological Administration Training Centre Hunan Branch, Changsha 410125, China
2. Key Laboratory of Hunan Province for Meteorological Disaster Prevention and Mitigation, Changsha 410118, China
3. Hunan Meteorological Service Center, Changsha 410118, China
4. Yang Jiang Emergency Command Platform Techmology Center, Yangjiang 529500, China
5. Yangjiang Meteorological Bureau, Yangjiang 529500, China
Download: PDF(3808 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Land surface temperature (LST) retrieved from remote sensing plays an important role in climatology, hydrology, ecology and other fields, and microwave detection has the wide range and all-weather advantages. It is of great significance to verify the reliability of LST products from domestic satellite on a large scale. Based on the microwave LST product of Fengyun 3C combined with ground surface temperature observed from 97 meteorological stations in Hunan Province, the authors explored the accuracy of microwave inversion and its influencing factors. The results show that the mean absolute error, the root mean squared error, the coefficient of determination, the relative error between LST product and observed data is 6.54℃, 8.88℃, 0.57 and 0.29% respectively, the accuracy of ascending (nighttime) and the south is better than that of descending (daytime) and the north, and the worst consistency is around Dongting Lake. The LST product is of high precision in low temperature but with general underestimation, the accuracy is linearly correlated with the average temperature of each site, and in most cases it is comparable with MODIS products. The precision of LST product increases with the altitude, and varies with seasons, the time series fluctuation of ground temperature can be accurately captured at the sites with strong consistency. According to the analysis results, the inversion accuracy and applicability of LST product could be improved by modifying the retrieval algorithm in the future.

Keywords FengYun-3C      microwave radiation imager      remote sensing retrieval      land surface temperature      accuracy evaluation     
ZTFLH:  P407.7  
Corresponding Authors: LIU Fulai     E-mail: fjz92419@hotmail.com;Liufl10126@126.com
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiazhi FAN
Yu LUO
Shiqi TAN
Wen MA
Honghao ZHANG
Fulai LIU
Cite this article:   
Jiazhi FAN,Yu LUO,Shiqi TAN, et al. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020066     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/249
Fig.1  The geography, the footprints of FY-3C and ground observation station located in Hunan province
频率/
GHz
极化形式 带宽/
GHz
灵敏
度/K
地面分辨率/
(km×km)
像元大小/
(km×km)
10.65 垂直/水平 180 0.5 51×85 40×11.2
18.7 垂直/水平 200 0.5 30×50 40×11.2
23.8 垂直/水平 400 0.8 27×45 20×11.2
36.5 垂直/水平 900 0.5 18×30 20×11.2
89 垂直/水平 4600 1 9×15 10×11.2
Tab.1  Introduction to the microwave radiation imager channels
数据源 数据量 MAE/℃ RMSE/℃ R2 RE/%
整体数据 31 938 6.54 8.88 0.57 0.29
升轨数据 16 329 3.18 4 0.80 0.16
降轨数据 15 609 10.06 12.03 0.65 0.39
Tab.2  The error parameters in land surface temperature of FY-3C with observation
Fig.2  The scatter diagram of land surface temperature from observation station and remote sensing
Fig.3  The distribution of determination coefficient in land surface temperature from FY-3C and observation
海拔和季节 数据量 MAE/℃ RMSE/℃ R2 RE/%
400 m以上站点 1 770 5.46 6.78 0.66 0.27
400 m以下站点 30 168 6.61 8.99 0.57 0.29
春季 8 752 6.05 7.82 0.39 0.31
夏季 9 778 8.74 11.07 0.11 0.28
秋季 9 326 6.19 8.67 0.41 0.27
冬季 4 082 3.16 4.58 0.21 0.37
Tab.3  The influence of altitude and season on the precision of land surface temperature from remote sensing
Fig.4  The variation of error parameters with station altitude
Fig.5  The comparison of land surface temperature in remote sensing and observation in different sensons
站点 数据量 MAE/℃ RMSE/℃ R2 RE/%
益阳市南县站 271 12.3 15.46 0.12 0.45
郴州市汝城站 386 3.59 4.58 0.78 0.18
Tab.4  The error parameters in stations of best and worst consistency
Fig.6  The time series diagram of land surface temperature from remote sensing and observation in Nanxian and Rucheng station
Fig.7  The variation of error parameters with mean land surface temperature in station
[1] Mannstein H. Surface energy budget,surface temperature and thermal inertia[J]. Remote Sensing Applications in Meteorology and Climatology:Springer, 1987: 391-410.
[2] Sellers P, Hall F, Asrar G, et al. The first ISLSCP field experiment (FIFE)[J]. 1988,69(1):22-27.
[3] 吴迪, 陈健, 石满, 等. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019,31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
[3] Wu D, Chen J, Shi M, et al. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land and Resources, 2019,31(2):59-65.doi: 10.6046/gtzyyg.2019.02.09.
[4] 孟翔晨, 刘昊, 程洁. 基于FY-2F数据的中国区域地表温度日变化模型评价及特征研究[J]. 遥感学报, 2019,23(4):570-581.
[4] Meng X C, Liu H, Cheng J. Evaluation and characteristic research in diurnal surface temperature cycle in China using FY-2F data[J]. Journal of Remote Sensing, 2019,23(4):570-581.
[5] Quan W, Chen H, Han X, et al. Validation of the modified Becker’s split-window approach for retrieving land surface temperature from AVHRR[J]. Journal of Meteorological Research, 2015,29(5):823-836.
[6] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018,30(4):90-96.doi: 10.6046/gtzyyg.2018.04.14.
[6] Wu Y, Jiang S L, Wang Z H. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land and Resources, 2018,30(4):90-96.doi: 10.6046/gtzyyg.2018.04.14.
[7] 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学:地球科学, 2012,42(6):814-842.
[7] Shi J C, Du Y, Du J Y, et al. Progresses on microwave remote sensing of land surface parameters[J]. Scientia Sinica (Terrae), 2012,55:1052-1078.
[8] 周芳成, 宋小宁, 李召良. 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[8] Zhou F C, Song X N, Li Z L. Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[9] 刘晶, 马红章, 杨乐, 等. 基于被动微波的地表温度反演研究综述[J]. 遥感技术与应用, 2012,27(6):812-821.
[9] Liu J, Ma H Z, Yang L, et al. A survey of surface temperature retrieval by passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2012,27(6):812-821.
[10] 王亚维, 宋小宁, 唐伯惠, 等. 基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例[J]. 国土资源遥感, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
[10] Wang Y W, Song X N, Tang B H, et al. Validation of FY-3C derived land surface temperature over the source region of the Yellow River:A case study of Maqu County[J]. Remote Sensing for Land and Resources, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
[11] 廖玉芳, 彭嘉栋, 郭庆. 湖南气候对全球气候变化的响应[J]. 大气科学学报, 2014,37(1):75-81.
[11] Liao Y F, Peng J D, Guo Q. Response of Hunan climate to global climate change[J]. Trans Atmos Sci, 37(1):75-81.
[12] Zhu Y, Li X, Pearson S, et al. Evaluation of Fengyun-3C soil moisture products using in-situ data from the Chinese automatic soil moisture observation stations:A case study in Henan Province,China[J]. 2019,11(2):248.
[13] Dousset B, Gourmelon F. Satellite multi-sensor data analysis of urban surface temperatures and landcover[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003,58(1/2):43-54.
[14] 张扬建, 范春捆, 黄珂, 等. 遥感在生态系统生态学上应用的机遇与挑战[J]. 生态学杂志, 2017,36(3):809-823.
[14] Zhang Y J, Fan C K, Huang K, et al. Opportunities and challenges in remote sensing applications to ecosystem ecology[J]. Chinere Journal of Ecology, 2017,36(3):809-823.
[15] 胡泽银, 王世杰, 白晓永, 等. 贵州省地表温度的遥感反演评价及时空分异规律[J]. 生态学杂志, 2018,37(9):2794-2807.
[15] Hu Z Y, Wang S J, Bai X Y, et al. Remote sensing retrieval and spatial-temporal differentiation of land surface temperature in Guizhou Province[J]. Chinese Journal of Ecology, 2018,37(9):2794-2807.
[16] 邹德富, 赵林, 吴通华, 等. MODIS地表温度产品在青藏高原连续多年冻土区的适用性分析[J]. 冰川冻土, 2015,37(2):308-317.
[16] Zou D F, Zhao L, Wu T H, et al. Assessing the applicability of MODIS land surface temperature products in continuous permafrost regions in the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015,37(2):308-317.
[1] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[2] MA Junjun, WANG Chunlei, HUANG Xiaohong. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin[J]. Remote Sensing for Natural Resources, 2023, 35(1): 198-204.
[3] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[4] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[5] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[6] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[7] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[8] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[9] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[10] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[11] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[12] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[13] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[14] Hongli SONG, Xiaonan ZHANG. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 26-32.
[15] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech