Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 173-183     DOI: 10.6046/zrzyyg.2024146
|
Gaussian mixture model and its application in remote sensing identification of industrial heat sources
LI Lelin1,2(), WANG Wenxi3, YANG Wentao1, CHEN Hao2, PENG Huanhua2, ZHAO Qian3
1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China
2. Institute for Local Sustainable Development Goals, Hunan University of Science and Technology, Xiangtan 411201, China
3. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Download: PDF(5032 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Precisely extracting the information of industrial heat source activities serves as a significant prerequisite for the prevention and control of air pollution and the prediction of industrial economy in China. However, due to unclear heat source characteristics and inaccurate type determination, the remote sensing monitoring of industrial heat sources fails to be widely applied. This study investigated Hunan Province based on the Suomi-NPP VIIRS Nightfire data from 2015 to 2021. First, this study extracted nighttime industrial heat sources from the data using spatial filtering and the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm. Second, this study constructed temperature characteristic template functions for different industrial heat sources using the Gaussian mixture model. Third, this study determined the subcategories of industrial heat sources according to temperature similarity of the same categories, achieving an overall classification accuracy of 86.31 %. Finally, this study obtained the layout of industrial heat sources in Hunan Province. The results indicate that the industry in Hunan Province was dominated by petrochemical plants, with the smallest number of coal-to-chemical plants. Metallurgical enterprises, showing the highest heat radiation intensity, were primarily distributed in the Loudi-Xiangtan-Zhuzhou area. From 2015 to 2019, industrial heat sources in Hunan Province showed a decreasing trend, indicating that relevant government departments effectively rectified the scattered, non-compliant, and polluting factories in Hunan Province during the 13th Five-Year Plan period. During the COVID-19 pandemic, the number of heat sources changed slightly since work and production were gradually resumed under the effective regulation of the government. This study analyzed the grey relational degrees between the heat radiation emission intensity and the relevant indicators of energy consumption and industrial pollutant emissions. Based on the comprehensive industrial energy consumption, industrial sulfur dioxide emissions, and heat radiation emission intensity, this study explored the relevant situation of energy consumption, pollution, and heat emissions in Hunan Province, dividing the cities and prefectures into seven types accordingly. Overall, this study provides information sources and data support for local governments to dynamically monitor the production activities of local key industrial enterprises. Ascertaining the spatial distribution patterns and evolutionary trends of different industrial enterprises will contribute to the formulation of industrial transformation policies by the government and relevant departments and the practice of sustainable development.

Keywords Suomi-NPP VIIRS Nightfire data      industrial heat source      temperature characteristics      Gaussian mixture model      remote sensing identification     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lelin LI
Wenxi WANG
Wentao YANG
Hao CHEN
Huanhua PENG
Qian ZHAO
Cite this article:   
Lelin LI,Wenxi WANG,Wentao YANG, et al. Gaussian mixture model and its application in remote sensing identification of industrial heat sources[J]. Remote Sensing for Natural Resources, 2025, 37(4): 173-183.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024146     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/173
Fig.1  Distribution of industrial heat sources extracted based on VNF data
Fig.2  Temperature characteristics of industrial heat sources in different categories
企业类别 GMM模型 R2 调整后R2 RMSE/%
冶金 f ( x ) = 4.55 e - x - 874.2 85.41 2 + 3.315 e - x - 1094 1443 2 + 0.2803 e - x - 1531 1302 2 0.993 7 0.993 2 0.114 1
水泥 f ( x ) = 11.52 e - x - 840 93.58 2 0.937 2 0.934 8 0.870 4
石化 f ( x ) = 4.894 e - x - 1191 168 2 + 2.275 e - x - 858.4 119.6 2 + 0.1839 e - x - 1586 206.1 2 0.988 0 0.986 9 0.218 5
煤化 f ( x ) = 4.533 e - x - 1752 103.8 2 + 2.041 e - x - 1776 324.1 2 0.970 9 0.967 6 0.277 8
Tab.1  GMM for temperature characteristics of industrial heat source subclasses
分类类别 参考类别 用户精度/%
冶金 水泥 石化 煤化
冶金 34 2 3 1 85.00
水泥 2 38 3 2 84.44
石化 3 4 64 0 90.14
煤化 0 1 2 9 75.00
制图精度/% 89.47 84.44 88.89 75.00
总体精度/% 86.31
Tab.2  Classification accuracy of industrial heat sources
Fig.3  Distribution of various types of industrial heat sources in study area
市级行政区 冶金 水泥 石化 煤化 共计
长沙市 4 8 6 0 18
株洲市 2 2 6 0 10
湘潭市 5 5 7 1 18
衡阳市 9 1 9 2 21
邵阳市 0 3 4 1 8
岳阳市 0 5 11 1 17
常德市 1 6 4 0 11
张家界市 0 2 0 0 2
益阳市 0 2 2 1 5
郴州市 8 1 11 1 21
永州市 1 2 4 0 7
怀化市 1 2 4 0 7
娄底市 6 5 3 4 18
湘西土家族苗族自治州 2 1 1 1 5
共计 39 45 72 12 168
Tab.3  Statistics on the number of industrial heat sources(个)
Fig.4  Analysis of standard distance circles for industrial heat sources in key economic zones
Fig.5-1  Distribution of heat emissions from various types of industrial heat sources in study area
Fig.5-2  Distribution of heat emissions from various types of industrial heat sources in study area
Fig.6  Variation trend of industrial heat sources in in study area in different years
评价项 关联度 排名
X8 0.846 1
X3 0.788 2
X5 0.761 3
X7 0.756 4
X1 0.726 5
X4 0.712 6
X6 0.704 7
X2 0.700 8
Tab.4  Results of grey relational degree
[1] 李宇军. 生态文明视野下的企业环保责任——“腾格里沙漠违法排污” 案例分析[J]. 杭州师范大学学报(社会科学版), 2015, 37(6):119-125.
[1] Li Y J. The enterprise environmental responsibility from the perspective of ecological civilization:A case study on illegal pollution discharge in Tengger Desert[J]. Journal of Hangzhou Normal University (Humanities and Social Sciences), 2015, 37(6):119-125.
[2] 何慧妍, 杨庆媛, 毕国华, 等. 重庆市2009—2018年工业用地供应规模时空特征分析[J]. 长江流域资源与环境, 2021, 30(4):808-817.
[2] He H Y, Yang Q Y, Bi G H, et al. Spatio-temporal characteristics of industrial land supply in Chongqing from 2009 to 2018[J]. Resources and Environment in the Yangtze Basin, 2021, 30(4):808-817.
[3] 高菠阳, 罗会琳, 黄志基, 等. 中国工业用地出让价格空间格局及影响因素[J]. 地球信息科学学报, 2020, 22(6):1189-1201.
[3] Gao B Y, Luo H L, Huang Z J, et al. Research on the spatial layout of and factors affecting the price of industrial land in China[J]. Journal of Geo-Information Science, 2020, 22(6):1189-1201.
[4] 史焱文, 李小建, 孟德友. 典型农区县域工业化进程评价及时空演进——以河南省为例[J]. 经济地理, 2020, 40(10):118-126,153.
[4] Shi Y W, Li X J, Meng D Y. Evaluation of county industrialization process and analysis of spatial and temporal evolution in typical agricultural areas:A case study of Henan Province[J]. Economic Geography, 2020, 40(10):118-126,153.
[5] 傅国伟. 当代环境规划的定义、作用与特征分析[J]. 中国环境科学, 1999, 19(1):72-76.
[5] Fu G W. Definition,function and characteristics analysis of modern environmental planning[J]. China Environmental Science, 1999, 19(1):72-76.
[6] 任胜钢, 张如波, 袁宝龙. 长江经济带工业生态效率评价及区域差异研究[J]. 生态学报, 2018, 38(15):5485-5497.
[6] Ren S G, Zhang R B, Yuan B L. Industrial eco-efficiency evaluation and regional differences of Yangtze River Economic Belt[J]. Acta Ecologica Sinica, 2018, 38(15):5485-5497.
[7] 赖建波. 重工业热源的遥感识别及空间分布格局研究[D]. 兰州: 西北师范大学, 2020.
[7] Lai J B. Study on remote sensing identification and spatial distribution pattern of heat source in heavy industry[D]. Lanzhou: Northwest Normal University, 2020.
[8] 陈鹏飞, 卢力, 朱华忠, 等. 基于不同分辨率影像的水泥厂遥感识别适宜性研究[J]. 环境污染与防治, 2015, 37(9):20-28.
[8] Chen P F, Lu L, Zhu H Z, et al. Research on the suitability of different resolutions of image for identification of the cement enterprise using remote sensing[J]. Environmental Pollution and Control, 2015, 37(9):20-28.
[9] 陈鹏飞, 卢力, 朱华忠, 等. 不同分辨率遥感影像的钢铁厂识别适宜性研究[J]. 地球信息科学学报, 2015, 17(9):1119-1127.
[9] Chen P F, Lu L, Zhu H Z, et al. Research on the suitability of image at different resolutions for the identification of steel enterprise using remote sensing[J]. Journal of Geo-Information Science, 2015, 17(9):1119-1127.
[10] 于一凡, 潘军, 邢立新, 等. 短波红外波段高温目标识别的可行性分析[J]. 国土资源遥感, 2014, 26(1):25-30.doi:10.6046/gtzyyg.2014.01.05.
[10] Yu Y F, Pan J, Xing L X, et al. Feasibility analysis of shortwave infrared band for recognition of high temperature target[J]. Remote Sensing for Land and Resources, 2014, 26(1):25-30.doi:10.6046/gtzyyg.2014.01.05.
[11] Zhou Y, Zhao F, Wang S X, et al. A method for monitoring iron and steel factory economic activity based on satellites[J]. Sustainability, 2018, 10(6):1935.
[12] 孙爽, 姜磊, 刘保献, 等. 中高分辨率卫星影像的装置级别工业热源识别[J]. 遥感学报, 2024, 28(8):2101-2112.
[12] Sun S, Jiang L, Liu B X, et al. Method development for device-le-vel industrial heat source identification using medium and high-reso-lution satellite images[J]. National Remote Sensing Bulletin, 2024, 28(8):2101-2112.
[13] Elvidge C D, Zhizhin M, Baugh K, et al. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data[J]. Energies, 2016, 9(1):14.
[14] 孙佳琪, 刘永学, 董雁伫, 等. 基于Suomi-NPP VIIRS夜间热异常产品的城市工业热源分类——以京津冀地区为例[J]. 地理与地理信息科学, 2018, 34(3):13-19.
[14] Sun J Q, Liu Y X, Dong Y Z, et al. Classification of urban industrial heat sources based on Suomi-NPP VIIRS nighttime thermal anomaly products:A case study of the Beijing-Tianjin-Hebei Region[J]. Geography and Geo-Information Science, 2018, 34(3):13-19.
[15] 李博, 范俊甫, 韩留生, 等. 基于VIIRS Nightfire数据的山东省工业热源分类提取与变化特征分析[J]. 遥感技术与应用, 2022, 37(4):919-928.
[15] Li B, Fan J F, Han L S, et al. Classification extraction and variation characteristics analysis of industrial heat sources in Shandong Province based on VIIRS nightfire data[J]. Remote Sensing Technology and Application, 2022, 37(4):919-928.
[16] 张钦挺, 邹滨, 刘宁, 等. 耦合温度特征的工业热源ANN遥感识别与时空演化分析[J]. 遥感学报, 2024, 28(4):956-968.
[16] Zhang Q T, Zou B, Liu N, et al. Satellite-based ANN identification and spatiotemporal evolution analysis of industrial heat sources coupled with temperature characteristics[J]. National Remote Sensing Bulletin, 2024, 28(4):956-968.
[17] Ma Y, Ma C H, Liu P, et al. Spatial-temporal distribution analysis of industrial heat sources in the US with geocoded,tree-based,large-scale clustering[J]. Remote Sensing, 2020, 12(18):3069.
[18] Ma C H, Niu Z, Ma Y, et al. Assessing the distribution of heavy industrial heat sources in India between 2012 and 2018[J]. ISPRS International Journal of Geo-Information, 2019, 8(12):568.
[19] 纪轩禹. 京津冀地区工业热源活动卫星遥感监测及环境影响研究[D]. 青岛: 山东科技大学, 2019.
[19] Ji X Y. Evaluation of the industrial heat sources activities over Jing-Jin-Ji region and their impact on the air pollution based on satellite data[D]. Qingdao: Shandong University of Science and Technology, 2019.
[20] 陶金花, 范萌, 顾坚斌, 等. 新冠病毒疫情期间复工复产卫星遥感监测[J]. 遥感学报, 2020, 24(7):824-836.
[20] Tao J H, Fan M, Gu J B, et al. Satellite observations of the return-to-work over China during the period of COVID-19[J]. Journal of Remote Sensing, 2020, 24(7):824-836.
[21] 孙爽, 李令军, 赵文吉, 等. 基于热异常遥感的冀南城市群工业能耗及大气污染[J]. 中国环境科学, 2019, 39(7):3120-3129.
[21] Sun S, Li L J, Zhao W J, et al. Industrial pollution emissions based on thermal anomaly remote sensing monitoring:A case study of southern Hebei urban agglomerations,China[J]. China Environmental Science, 2019, 39(7):3120-3129.
[22] 郝丽春, 孟庆岩, 葛小三, 等. 一种基于八分位法的工业热污染区提取方法[J]. 遥感技术与应用, 2020, 35(2):469-477.
[22] Hao L C, Meng Q Y, Ge X S, et al. Extraction method of industrial heat pollution area based on octave method[J]. Remote Sensing Technology and Application, 2020, 35(2):469-477.
[23] Elvidge C D, Zhizhin M, Hsu F C, et al. VIIRS nightfire:Satellite pyrometry at night[J]. Remote Sensing, 2013, 5(9):4423-4449.
[24] Elvidge C D, Zhizhin M, Baugh K, et al. Extending nighttime combustion source detection limits with short wavelength VIIRS data[J]. Remote Sensing, 2019, 11(4):395.
[25] Cherifa S, Messaoud R. New technique to use the GMM in speaker recognition system (SRS)[C]// 2013 International Conference on Computer Applications Technology (ICCAT).IEEE, 2013: 1-5.
[26] Silverman B W. Density estimation in action[M]// Density Estimation for Statistics and Data Analysis.London:Routledge, 2018: 120-158.
[27] 蒋姝睿, 王玥, 王萌, 等. 区域视角下中国工业行业与工业污染关系[J]. 中国环境科学, 2017, 37(11):4380-4387.
[27] Jiang S R, Wang Y, Wang M, et al. Industrial sectors and pollution in China based on the regional perspective[J]. China Environmental Science, 2017, 37(11):4380-4387.
[1] ZOU Haijing, ZOU Bin, WANG Yulong, ZHANG Bo, ZOU Lunwen. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy[J]. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
[2] YANG Chiyi, GUAN Haixiang, WU Wei, LIU Meiyu, LI Ying, SU Wei. Remote sensing monitoring method for flooded farmland based on domestic GF-3 radar images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 71-80.
[3] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[4] YAN Chi, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei. The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang, Shijiaying, Fangshan District, Beijing as an Example[J]. Remote Sensing for Land & Resources, 2020, 32(4): 251-257.
[5] HU Bo, ZHU Gu-chang, ZHANG Yuan-fei, LENG Chao. Method for Extraction of Remote Sensing Information Based on Gaussian Mixture Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 41-47.
[6] ZHONG Shi-Quan, CHEN Yan-Li, MO Jian-Fei, CHEN Yu-Lan. Cole Feature Extraction from CBERS-02B Remote Sensing Images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 77-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech