Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 1-8     DOI: 10.6046/zrzyyg.2023385
|
Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy
ZOU Haijing1,2(), ZOU Bin1,2(), WANG Yulong1,2, ZHANG Bo1,2, ZOU Lunwen3
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
2. Key Laboratory of Spatio-temporal Information and Intelligent Services, Ministry of Natural Resources of China, Changsha 410083, China
3. College of Geographical Sciences, Hunan Normal University, Changsha 410081, China
Download: PDF(2912 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A timely and accurate understanding of the spatial extents and distributions of industrial solid waste and open pits in mining areas is significant for the precise control of solid waste contamination and the ecosystem conservation. Remote sensing technology is an effective monitoring method. However, single-scale sample sets fail to fully represent the features of industrial solid waste yards and open pits with different shapes and sizes. Constructing multiscale sample sets may be effective in solving the problem of incomplete feature representation for different industrial solid waste yards and open pits, thereby enhancing the identification accuracy and generalization capability of models. By fully considering the differences in the shape and size of different industrial solid waste yards and open pits, this study proposed a remote sensing identification method for industrial solid waste and open pits based on the multiscale sample set optimization strategy. In the proposed method, a multiscale sample set was prepared based on the preprocessed data of the GF-1B, GF-1C, and GF6 satellite remote sensing images. Subsequently, a U-Net deep learning network model was constructed to identify industrial solid waste and open pits. Finally, the identification accuracy was compared with that of the single-scale sample set model. The results show that the U-Net deep learning network model based on the multiscale sample set achieved identification accuracy of 81.23 %, recall of 66.88 %, F1-score of 73.36 %, and average intersection over union of 73.55 %, suggesting improvements by 6.02, 1.02, 3.12, and 9.86 percentage points, respectively, compared to the single-scale sample set model. Overall, this study provides a reliable approach for precisely monitoring industrial solid waste and open pits.

Keywords multiscale      deep learning      industrial solid waste      remote sensing identification     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haijing ZOU
Bin ZOU
Yulong WANG
Bo ZHANG
Lunwen ZOU
Cite this article:   
Haijing ZOU,Bin ZOU,Yulong WANG, et al. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy[J]. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023385     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/1
遥感平台 图幅
数量/景
获取时间 空间分
辨率/m
波段范围/nm
GF-1B 3 2022-04-27 2(全色波段)
8(多光谱波段)
450~890
GF-1C 3 2022-10-14
GF-6 4 2022-12-24
Tab.1  Description of remote sensing image data
目标类型 影像图例 特征概括
废石堆场 一般位于矿山或选矿厂附近,大多随意堆放,呈现不规则的矩形或圆形;影像上常呈现棕黑色、深灰色等,与周围地物存在明显色差
尾矿库 呈现出规则或不规则的三角形、半圆形、矩形等形状;影像上表现为明显的封闭区域,可见明显的阶梯状筑坝,常位于谷沟内;纹理特征明显细致,色调较亮
露天采场 周边常有显著的矿山裸露地带,矿体颜色明亮;存在坑洞或裂缝等纹理特征,影像上可识别出道路或行车痕迹
Tab.2  Remote sensing interpretation symbols for industrial solid waste and open-pit mining areas
Fig.1  Distribution of industrial solid waste samples and open-pit mining areas
Fig.2  Structure diagram of U-Net neural network
训练参数 参数值
初始学习率 0.001
优化器 Adam
损失函数 Binary cross entropy
批尺寸 3
迭代次数 200
Tab.3  Model parameter
模型 样本集 精确率 召回率 F1分数 mIoU
U-Net 单尺度 75.21 65.86 70.24 63.69
多尺度 81.23 66.88 73.36 73.55
DeepLabv3+ 单尺度 73.06 58.68 65.09 61.70
多尺度 79.52 58.29 67.27 69.91
Segmenter 单尺度 66.72 68.59 67.64 60.39
多尺度 71.81 69.28 70.52 65.81
Tab.4  Comparison of recognition accuracy on different scale sample set models(%)
Fig.3-1  Loss functions of different scale sample set model
Fig.3-2  Precision of different scale sample set model
类型 单尺度样本集 多尺度样本集
遥感影像 样本标注 识别结果 遥感影像 样本标注 识别结果
废石堆场
尾矿库
露天采场
Tab.5  The comparison of recognition results of different scale sample set models
[1] 孙坚, 耿春雷, 张作泰, 等. 工业固体废弃物资源综合利用技术现状[J]. 材料导报, 2012, 26(11):105-109.
[1] Sun J, Geng C L, Zhang Z T, et al. Present situation of comprehensive utilization technology of industrial solid waste[J]. Materials Reports, 2012, 26(11):105-109.
[2] Gao S, Chen Y, Li K, et al. Mapping opencast iron mine and mine solid waste based on a new spectral index from medium spatial re-solution satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:7788-7798.
[3] Chen W, Peng L, Hu K, et al. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction:A mirror of coherent structural variation[J]. Journal of Hazardous Materials, 2020,393:122425.
[4] 刘雪龙. 面向对象的遥感影像工业固体废物信息提取方法研究[D]. 北京: 中国地质大学(北京), 2013.
[4] Liu X L. Object-oriented remote sensing images industrial solid waste information extraction method research[D]. Beijing: China University of Geosciences(Beijing), 2013.
[5] Kwarteng A Y, Al-Enezi A. Assessment of Kuwait’s Al-Qurain landfill using remote sensing imagery[J]. Journal of Environmental Science and Health Part A:Toxic/Hazardous Substances and Environmental Engineering, 2004, 39(2):351-364.
[6] Bai T, Sun K, Deng S, et al. Multi-scale hierarchical sampling change detection using Random Forest for high-resolution satellite imagery[J]. International Journal of Remote Sensing, 2018, 39(21):7523-7546.
[7] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sen-sing, 2012,67:93-104.
[8] Li P, Xu H, Guo J. Urban building damage detection from very high resolution imagery using OCSVM and spatial features[J]. International Journal of Remote Sensing, 2010, 31(13):3393-3409.
[9] Ye S, Chen D, Yu J. A targeted change-detection procedure by combining change vector analysis and post-classification approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,114:115-124.
[10] Silvestri S, Omri M. A method for the remote sensing identification of uncontrolled landfills:Formulation and validation[J]. International Journal of Remote Sensing, 2008, 29(4):975-989.
[11] 吴倩雯, 况润元, 张刚华, 等. 东江源稀土矿区土地利用变化遥感监测研究[J]. 测绘科学, 2019, 44(3):51-56.
[11] Wu Q W, Kuang R Y, Zhang G H, et al. Remote sensing monitoring of land-use change in rare earth mining area in the source region of Dongjiang River[J]. Science of Surveying and Mapping, 2019, 44(3):51-56.
[12] 卢遥, 卢小平, 武永斌, 等. 综合机载LiDAR与高分影像的煤矿区典型地物提取方法[J]. 测绘通报, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
[12] Lu Y, Lu X P, Wu Y B, et al. Typical surface features extraction in mining area based on data of LiDAR and WorldView-2[J]. Bulletin of Surveying and Mapping, 2015(12):57-59.
doi: 10.13474/j.cnki.11-2246.2015.378
[13] Liu T, Zheng P, Bao J. Deep learning-based welding image recognition:A comprehensive review[J]. Journal of Manufacturing Systems, 2023,68:601-625.
[14] 李庆, 陈俊杰, 李庆亭, 等. 基于SSD模型的京津冀地区尾矿库检测[J]. 遥感技术与应用, 2021, 36(2):293-303.
doi: 10.11873/j.issn.1004-0323.2021.2.0293
[14] Li Q, Chen J J, Li Q T, et al. Detection of tailings pond in Beijing-Tianjin-Hebei Region based on SSD model[J]. Remote Sensing Technology and Application, 2021, 36(2):293-303.
[15] 闫凯, 沈汀, 陈正超, 等. 基于深度学习的SSD模型尾矿库自动提取[J]. 中国科学院大学学报, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
[15] Yan K, Shen T, Chen Z C, et al. Automatic extraction of tailing pond based on SSD of deep learning[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(3):360-367.
doi: 10.7523/j.issn.2095-6134.2020.03.009
[16] 刘冰洁, 邢旭东, 吴浩, 等. 深度学习支持下的尾矿库遥感识别方法[J]. 测绘科学, 2021, 46(12):129-139.
[16] Liu B J, Xing X D, Wu H, et al. Remote sensing identification of tailings pond based on deep learning model[J]. Science of Surveying and Mapping, 2021, 46(12):129-139.
[17] 张峰极. 多源遥感影像露天开采区深度学习提取方法研究[D]. 合肥: 安徽大学, 2019.
[17] Zhang F J. Research on deep learning extraction method in open mining area based on multi-source remote sensing images[D]. Hefei: Anhui University, 2019.
[18] 张蜀军. 基于实例分割的高分遥感无序固废堆场识别[D]. 成都: 西南交通大学, 2021.
[18] Zhang S J. Disorderd solid waste yards recognition from high-resolution remote sensing images based on instance segmentation[D]. Chengdu: SouthwestJiaotong University, 2021.
[19] 张仙, 李伟, 陈理, 等. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2):25-33.doi: 10.6046/zrzyyg.2022141.
[19] Zhang X, Li W, Chen L, et al. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2):25-33.doi: 10.6046/zrzyyg.2022141.
[20] 张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[20] Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[21] 王浩. 融入图卷积全局推理的固废堆场高分遥感检测及其环境影响力评估[D]. 成都: 西南交通大学, 2021.
[21] Wang H. High-resolution remote sensing detection of solid waste yard integrated with graph convolution global reasoning and its environmental impact assessment[D]. Chengdu: SouthwestJiaotong University, 2021.
[22] 段彦玮, 文倩, 孙水娟, 等. 矿产资源型城市的生态承载力与可持续发展研究——以湖南省郴州市为例[J]. 湖南农机, 2011, 38(3):110-112.
[22] Duan Y W, Wen Q, Sun S J, et al. Research on ecological carrying capacity and sustainable development:In a mining city a case study in Chenzhou City[J]. Hunan Agricultural Machinery, 2011, 38(3):110-112.
[23] 李威, 邓武军, 邓家琪, 等. 郴州创建国家可持续发展议程创新示范区的实施路径与思考[J]. 中国工程咨询, 2023(8):46-50.
[23] Li W, Deng W J, Deng J Q, et al. Implementation path and thinking of creating national sustainable development agenda innovation demonstration zone in Chenzhou[J]. China Engineering Consultants, 2023(8):46-50.
[24] 胡杰, 张莹, 谢仕义. 国产遥感影像分类技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(3):1-13.
doi: 10.3778/j.issn.1002-8331.2007-0101
[24] Hu J, Zhang Y, Xie S Y. Summary of research progress on application of domestic remote sensing image classification technology[J]. Computer Engineering and Applications, 2021, 57(3):1-13.
doi: 10.3778/j.issn.1002-8331.2007-0101
[25] 何直蒙, 丁海勇, 安炳琪. 高分辨率遥感影像建筑物提取的空洞卷积E-Unet算法[J]. 测绘学报, 2022, 51(3):457-467.
doi: 10.11947/j.AGCS.2022.20200601
[25] He Z M, Ding H Y, An B Q. E-Unet:Aatrous convolution-based neural network for building extraction from high-resolution remote sensing images[J]. ActaGeodaetica et Cartographica Sinica, 2022, 51(3):457-467.
[26] Chen D Y, Peng L, Li W C, et al. Building extraction and number statistics in WUI areas based on UNet structure and ensemble learning[J]. Remote Sensing, 2021, 13(6):1172.
[27] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision.Springer, 2018:833-851.
[28] Strudel R, Garcia R, Laptev I, et al. Segmenter:Transformer for semantic segmentation[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE, 2021:7242-7252.
[29] 许玥, 冯梦如, 皮家甜, 等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10):2905-2914.
doi: 10.11772/j.issn.1001-9081.2019030529
[29] Xu Y, Feng M R, Pi J T, et al. Remote sensing image segmentation method based on deep learning model[J]. Journal of Computer Applications, 2019, 39(10):2905-2914.
doi: 10.11772/j.issn.1001-9081.2019030529
[1] CEHN Lanlan, FAN Yongchao, XIAO Haiping, WAN Junhui, CHEN Lei. Predicting surface subsidence in large-scale mining areas based on time-series InSAR and the IRIME-LSTM model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 245-252.
[2] MA Fei, SUN Lupeng, YANG Feixia, XU Guangxian. Pansharpening based on the multiscale weighted neural network in the transform domain[J]. Remote Sensing for Natural Resources, 2025, 37(3): 76-84.
[3] GUO Wei, LI Yu, JIN Haibo. Detecting ships from SAR images based on high-dimensional contextual attention and dual receptive field enhancement[J]. Remote Sensing for Natural Resources, 2025, 37(3): 104-112.
[4] CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian. A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland[J]. Remote Sensing for Natural Resources, 2025, 37(3): 133-141.
[5] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[6] PANG Min. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
[7] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
[8] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[9] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[10] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[11] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[12] LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
[13] YU Hang, TAN Bingxiang, SHEN Mingtan, HE Chenrui, HUANG Yifei. Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms[J]. Remote Sensing for Natural Resources, 2024, 36(1): 118-127.
[14] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[15] CHEN Di, PENG Qiuzhi, HUANG Peiyi, LIU Yaxuan. Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5[J]. Remote Sensing for Natural Resources, 2023, 35(4): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech