Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 182-190     DOI: 10.6046/zrzyyg.2024323
|
Remote sensing-based assessment of ecological quality in open-pit coal mining areas based on the pressure-state-response and time series prediction models
LIU Jinyu1(), HU Jinshan1(), KANG Jianrong1, ZHU Yihu2, WANG Shengli2
1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China
2. Jiangsu Geologic Surveying and Mapping Institute, Nanjing 211102, China
Download: PDF(6059 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To quantify the mining disturbance of open-pit coal mines to surrounding ecosystems, this study investigated the Pingshuo mining area in Shanxi Province. Based on the pressure-state-response (PSR) model, seven types of assessment indicators were selected to construct the remote sensing ecological index of open-pit coal mining area (OMRSEI) through combination weighting. The validity of the OMRSEI was verified through correlation and comparative analyses. Moreover, the trend of ecological evolution in the study area for the next two years was predicted using the exponential smoothing method. The results indicate that the OMRSEI exhibited significant spatial correlation and validity, establishing it as an effective remote sensing indicator for ecological assessment in open-pit coal mining areas. The study area manifested an overall enhanced ecological quality from 2013 to 2023. Specifically, the Antaibao and Anjialing open-pit coal mines witnessed continuously improved ecological quality due to the progressive restoration of waste dumps. In contrast, the Dong open-pit coal mine displayed an ecological quality trend characterized by a first decline and then recovery. The average OMRSEI of the study area is predicted to continuously rise from 2025 to 2027, indicating sustained enhancement in ecological quality.

Keywords ecological quality assessment      open-pit coal mine      pressure-state-response (PSR) model      time series prediction      quantitative remote sensing     
ZTFLH:  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinyu LIU
Jinshan HU
Jianrong KANG
Yihu ZHU
Shengli WANG
Cite this article:   
Jinyu LIU,Jinshan HU,Jianrong KANG, et al. Remote sensing-based assessment of ecological quality in open-pit coal mining areas based on the pressure-state-response and time series prediction models[J]. Remote Sensing for Natural Resources, 2025, 37(6): 182-190.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024323     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/182
Fig.1  Overview map of the research area
一级
指标
二级
指标
效应 计算公式
压力 DI - DI=R-N
NDBSI - SI1=$\frac{({S}_{1}+R)-(B+N)}{({S}_{1}+R)+(B+N)}$
IBI=$\frac{2{S}_{1}/({S}_{1}+N)-[N/(N+R)+G/(G+{S}_{1}\left)\right]}{2{S}_{1}/({S}_{1}+N)+[N/(N+R)+G/(G+{S}_{1}\left)\right]}$
NDBSI=(SI+IBI)/2
状态 VHI + NDSVI=(S1-R)/(S1+R)
NRI=N/G
NDVI=(N-R)/(N+R)
VHI=PC1(NDVI,NDSVI,NRI)
SMMI + SMMI=$\sqrt[ ]{(N+{S}_{1})/2}$
响应 LST - L=gain×DN+bias
T=K2/ln(K1/L+1)
LST=T/[1+(λT/ρ)ln ε]-273.15
WET + WET=0.151 1B+0.197 3G+0.328 3R+
0.340 7N-0.711 7S1-0.455 9S2
SI2 - SI2=$\sqrt[ ]{B\times R}$
Tab.1  Method for calculating ecological indicators
一级指标 二级指标 熵权法权重 层次分析
法权重
组合权重
压力 DI 0.089 2 0.187 5 0.138 4
NDBSI 0.074 0 0.250 0 0.162 0
状态 VHI 0.734 7 0.187 5 0.461 1
SMMI 0.021 9 0.125 0 0.073 5
响应 LST 0.045 8 0.125 0 0.085 4
WET 0.016 4 0.062 5 0.039 5
SI2 0.017 9 0.062 5 0.040 2
Tab.2  The weights of each index of OMRSEI in the research area
研究年份 阈值1 阈值2 阈值3
2013年 0.400 1 0.475 0 0.540 8
2015年 0.433 0 0.529 5 0.577 8
2017年 0.481 0 0.581 2 0.631 2
2019年 0.431 5 0.518 6 0.562 1
2021年 0.454 8 0.537 4 0.596 4
2023年 0.461 3 0.546 8 0.599 9
均值 0.443 6 0.531 4 0.584 7
Tab.3  OMRSEI thresholds of the research area
Fig.2  Spatial and temporal distribution map of OMRSEI in the research area
Fig.3  Violin plot of OMRSE in the research area
Fig.4  Chord diagram of OMRSEI variation in the research area
Fig.5  GMI I scatter plot of OMRSEI in the research area
Fig.6  LISA cluster map of OMRSEI in the research area
Fig.7  Average prediction map of the OMRSEI in Pingshuo Shuonan mining area
Fig.8  Correlation heatmap of selected indicators
Fig.9  Comparison of remote sensing imagery and ecological quality in Pingshuo Shuonan mining area during 2013—2023
[1] Xu D L, Li X F, Chen J, et al. Research progress of soil and vegetation restoration technology in open-pit coal mine:A review[J]. Agriculture, 2023, 13(2):226.
doi: 10.3390/agriculture13020226 url: https://www.mdpi.com/2077-0472/13/2/226
[2] 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(1):286-292.
[2] Li S Z, Li X L, Yin D W. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology, 2022, 50(1):286-292.
[3] 张成业, 李军, 雷少刚, 等. 矿区生态环境定量遥感监测研究进展与展望[J]. 金属矿山, 2022(3):1-27.
[3] Zhang C Y, Li J, Lei S G, et al. Progress and prospect of the quantitative remote sensing for monitoring the eco-environment in mi-ning area[J]. Metal Mine, 2022(3):1-27.
[4] 于洋, 陈炳乾, 花奋奋, 等. 矿山地质环境灾变与保护修复研究现状与展望[J]. 金属矿山, 2024(3):1-18.
[4] Yu Y, Chen B Q, Hua F F, et al. Research status and prospect of mining-induced geo-environmental hazards and geological environment protection[J]. Metal Mine, 2024(3):1-18.
[5] Zhang Z, Li G Q, Su X B, et al. Geochemical controls on the enrichment of fluoride in the mine water of the Shendong mining area,China[J]. Chemosphere, 2021,284:131388.
[6] Lian M, Shang L H, Duan Z, et al. LiDAR mapping of atmospheric atomic mercury in the Wanshan area,China[J]. Environmental Pollution, 2018,240:353-358.
[7] Han X Y, Cao T Y, Yan X L. Comprehensive evaluation of ecological environment quality of mining area based on sustainable deve-lopment indicators:A case study of Yanzhou Mining in China[J]. Environment,Development and Sustainability, 2021, 23(5):7581-7605.
doi: 10.1007/s10668-020-00935-3
[8] 孙宏飞, 李永华, 姬艳芳, 等. 湘西汞矿区土壤中重金属的空间分布特征及其生态环境意义[J]. 环境科学, 2009, 30(4):1159-1165.
[8] Sun H F, Li Y H, Ji Y F, et al. Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit,western Hunan Province[J]. Environmental Science, 2009, 30(4):1159-1165.
[9] Tian W X, Li Z Y, Liu W, et al. Grey clustering evaluation on regional eco-environmental quality based on normalized index value[J]. Meteorological and Environmental Research, 2011, 2(4):65-71.
[10] Zhuang Q W, Wu S X, Yan Y Y, et al. Monitoring land surface thermal environments under the background of landscape patterns in arid regions:A case study in Aksu River basin[J]. Science of The Total Environment, 2020,710:136336.
[11] 徐占军, 侯湖平, 张绍良, 等. 采矿活动和气候变化对煤矿区生态环境损失的影响[J]. 农业工程学报, 2012, 28(5):232-240.
[11] Xu Z J, Hou H P, Zhang S L, et al. Effects of mining activity and climatic change on ecological losses in coal mining areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):232-240.
[12] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
[12] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[13] 秦璐, 陈炳乾, 于洋, 等. 基于遥感生态指数的矿井关闭前后生态环境时空变化规律研究[J]. 金属矿山, 2023(3):242-249.
[13] Qin L, Chen B Q, Yu Y, et al. Study on the spatio-temporal variation regularity of ecological environment before and after mine closure based on remote sensing ecological index[J]. Metal Mine, 2023(3):242-249.
[14] 陈杏闪, 陈宇, 陆慧, 等. 义能矿区景观格局及生态环境时空动态遥感监测[J]. 遥感技术与应用, 2024, 39(2):426-434.
doi: 10.11873/j.issn.1004-0323.2024.2.0426
[14] Chen X S, Chen Y, Lu H, et al. Temporal and spatial dynamic monitoring of landscape pattern and ecological environment in Yineng mining area[J]. Remote Sensing Technology and Application, 2024, 39(2):426-434.
[15] 岳佳乐, 胡晋山, 郦嘉辉, 等. 基于MAGA-PPC模型的胡家河矿区生态环境质量评价[J]. 金属矿山, 2023(4):236-244.
[15] Yue J L, Hu J S, Li J H, et al. Ecological environment quality eva-luation of Hujiahe mining area based on MAGA-PPC[J]. Metal Mine, 2023(4):236-244.
[16] 刘英, 胡霄, 岳辉, 等. 基于时间序列模型的戈壁荒漠露天矿生态环境评价[J]. 煤炭科学技术, 2023, 51(12):125-139.
[16] Liu Y, Hu X, Yue H, et al. Ecological environmental assessment of Gobi desert open-pit mine based on time series model[J]. Coal Science and Technology, 2023, 51(12):125-139.
[17] 钟安亚, 孙娟, 胡春明, 等. 基于RSEI的北京王平煤矿生态环境修复效果评估及预测[J]. 矿业安全与环保, 2023, 50(4):89-96.
[17] Zhong A Y, Sun J, Hu C M, et al. Evaluation and prediction of ecological environment restoration effect of Beijing Wangping Coal Mine based on RSEI[J]. Mining Safety and Environmental Protection, 2023, 50(4):89-96.
[18] 王锦洋, 卢才武, 李发本, 等. 基于PSR和GA-Elman模型的露天矿区生态安全评价研究[J]. 中国矿业, 2020, 29(2):65-71.
[18] Wang J Y, Lu C W, Li F B, et al. Research on ecological security evaluation of open-pit mine area based on PSR and GA-Elman model[J]. China Mining Magazine, 2020, 29(2):65-71.
[19] Nie X R, Hu Z Q, Ruan M Y, et al. Remote-sensing evaluation and temporal and spatial change detection of ecological environment quality in coal-mining areas[J]. Remote Sensing, 2022, 14(2):345.
doi: 10.3390/rs14020345 url: https://www.mdpi.com/2072-4292/14/2/345
[20] 吴舒雁, 朱庆林, 武文. 基于PSR模型的大连湾海岸带生态安全评价研究[J/OL]. 海洋湖沼通报, 2024:1-10.(2024-04-01).https://kns.cnki.net/kcms/detail/37.1141.P.20240401.1502.002.html.
url: https://kns.cnki.net/kcms/detail/37.1141.P.20240401.1502.002.html
[20] Wu S Y, Zhu Q L, Wu W. An evaluation research on ecological security evaluation of Dalian Bay coastal zone based on the Pressure-State-Response model[J/OL]. Transactions of Oceanology and Limnology, 2024:1-10.(2024-04-01).https://kns.cnki.net/kcms/detail/37.1141.P.20240401.1502.002.html.
url: https://kns.cnki.net/kcms/detail/37.1141.P.20240401.1502.002.html
[21] 冯海英, 冯仲科, 冯海霞. 一种基于差值指数的颗粒物PM2.5浓度反演新方法[J]. 光谱学与光谱分析, 2018, 38(10):3012.
[21] Feng H Y, Feng Z K, Feng H X. One new method of PM2.5 concentration inversion based on difference index[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3012.
[22] Yi Z Y, Liu M L, Liu X N, et al. Long-term Landsat monitoring of mining subsidence based on spatiotemporal variations in soil moisture:A case study of Shanxi Province,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,102:102447.
[23] Alexander C. Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST)[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,86:102013.
[24] Gorji T, Sertel E, Tanik A. Monitoring soil salinity via remote sen-sing technology under data scarce conditions:A case study from Turkey[J]. Ecological Indicators, 2017,74:384-391.
[25] Wu R M X, Zhang Z W, Yan W J, et al. A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement[J]. PLoS One, 2022, 17(1):e0262261.
[26] 方时姣, 肖权. 中国区域生态福利绩效水平及其空间效应研究[J]. 中国人口·资源与环境, 2019, 29(3):1-10.
[26] Fang S J, Xiao Q. Research on regional ecological well-being performance and spatial effect in China[J]. China Population,Resources and Environment, 2019, 29(3):1-10.
[27] Billah B, King M L, Snyder R D, et al. Exponential smoothing model selection for forecasting[J]. International Journal of Forecasting, 2006, 22(2):239-247.
doi: 10.1016/j.ijforecast.2005.08.002 url: https://linkinghub.elsevier.com/retrieve/pii/S016920700500107X
[28] 朔州市人民政府. 关于印发朔州市“十四五”生态环境保护规划的通知:朔政发[2022]36号[A/OL].(2022-8-26)[2024-6-12].http://szxxgk.shuozhou.gov.cn/zfwj_1/202212/t20221216_420310.shtml.
url: http://szxxgk.shuozhou.gov.cn/zfwj_1/202212/t20221216_420310.shtml
[28] Shuozhou Municipal People’s Government. Notice on the issuance of the “14th Five-Year Plan” ecological and environmental protection plan of Shuozhou City:Shuo Zheng Fa [2022]No.36[A/OL].(2022-8-26)[2024-6-12].http://szxxgk.shuozhou.gov.cn/zfwj_1/202212/t20221216_420310.shtml.
url: http://szxxgk.shuozhou.gov.cn/zfwj_1/202212/t20221216_420310.shtml
[29] 张静, 杨丽萍, 贡恩军, 等. 基于谷歌地球引擎和改进型遥感生态指数的西安市生态环境质量动态监测[J]. 生态学报, 2023, 43(5):2114-2127.
[29] Zhang J, Yang L P, Gong E J, et al. Dynamic monitoring of eco-environmental quality in Xi’an based on GEE and adjusted RSEI[J]. Acta Ecologica Sinica, 2023, 43(5):2114-2127.
[1] LI Kaixuan, LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun. Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 148-155.
[2] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[3] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[4] Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
[5] DU Peijun, CHEN Yu, TAN Kun. Monitoring and analyzing wetland landscape pattern change and ecological security using remote sensing images:A case study of Jiangsu coastal wetland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 158-166.
[6] LI Xiao-ming, YANG Jing-song, YU Mei, YANG Qi-yong, LIU Mei-xian. Research on Quantitative Remote Sensing of Soil Salinization in the Arid Area Based on Electromagnetic Induction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 53-58.
[7] MAO Yao-Bao. Research on Hyperspectral Quantitative Remote Sensing Detection of the Rujigou Coal Fire Area in Ningxia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 69-75.
[8] CHEN Wei-Tao, ZHANG Zhi, WANG Yan-Xin. ADVANCES IN REMOTE SENSING-BASED DETECTING OF MINE EXPLOITATION AND MINE ENVIRONMENT[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(2): 1-8.
[9] LIU Liang-Ming, ZHANG Hong-Mei. THE APPLICATION OF MODIS IMAGERY TO MAPPING
CONCENTRATIONS OF SUSPENDED SEDIMENTS IN COASTAL WATERS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech