Please wait a minute...
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 20-28     DOI: 10.6046/gtzyyg.2019.03.03
A review of research on remote sensing for ground impervious surface percentage retrieval
Jiaqi ZUO1,2, Zegen WANG1, Jinhu BIAN2(), Ainong LI2, Guangbin LEI2, Zhengjian ZHANG2
1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China
2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Download: PDF(2146 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Urban expansion caused by urbanization brings many problems to the social and ecological environment. Monitoring urban change is an entry point to solve these problems. As an important indicator of urban expansion, the impervious surface has become a hotspot of research. The acquisition of impervious surface data and its time series variation analysis are the core of the current study. Compared with early planar map-based impervious surface extraction, remote sensing has been widely used in impervious surface research due to its continuous, rapid and extensive observation of the ground. Multi-source data fusion and multiple retrieval method make constant progress in remote sensing-based retrieval of ground impervious surface percentage, and the focus of the study is gradually shifted from the classification map of impervious surface to the quantitative retrieval of impervious surface percentage. In this paper, the authors summarized the methods of remote sensing retrieval of sub-pixel impervious surface percentage from the perspectives of single period and time series, analyzed the advantages and disadvantages of the retrieval methods in detail, and briefly described and compared the common precision validation method. Finally, the authors summarized the problems existing in the current remote sensing retrieval methods, proposed the corresponding solutions, and pointed out the trend of development in the future.

Keywords impervious surface percentage      quantitative remote sensing retrieval      time series      urbanization     
:  TP79  
Corresponding Authors: Jinhu BIAN     E-mail:
Issue Date: 30 August 2019
E-mail this article
E-mail Alert
Articles by authors
Jiaqi ZUO
Zegen WANG
Jinhu BIAN
Ainong LI
Guangbin LEI
Zhengjian ZHANG
Cite this article:   
Jiaqi ZUO,Zegen WANG,Jinhu BIAN, et al. A review of research on remote sensing for ground impervious surface percentage retrieval[J]. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
URL:     OR
Fig.1  Feature distribution of the first three MNF components (adapted from Cheng et al.[10])
模型 On b1-7 Off b1-7 On TC Off TC DEM Light Slope AE/% RE/% R
CART1 13.5 0.41 0.84
CART2 13.6 0.42 0.84
CART3 12.7 0.39 0.86
CART4 12.8 0.39 0.86
CART5 13.6 0.41 0.84
CART6 15.2 0.46 0.81
Tab.1  CART models and corresponding input variables
模型 模型机理 必要参数 模型优点 区域 反演精度
决策树[36] 一个二分递归的树结构模型。算法根据训练数据产生的规则将输入样本集分成多类或连续的目标变量,由每个规则定义多变量线性回归模型建立的条件 叶节点所需最小样本数、树的最大深度 不需输入数据满足统计分布要求,将输入变量和目标变量的关系简化为多元变量的线性关系 北京市 AE=12.7%
SVM[42] 基于统计学习理论和结构风险最小原理的二分类模型,其基本思想是求解能够正确划分训练数据集且几何间隔最大的分离超平面 核函数类型、核参数、惩罚因子 具有较好的泛化能力,对较少的训练样本和高空间维度的输入数据具有较强的鲁棒性 柏林市 MAE=12.4%
MLP[43] 包含输入层、输出层和隐藏层的网络,整个网络是通过一个调整节点间互连权重强度的迭代学习过程来建立预测模型 网络架构、学习算法、训练迭代的次数 能够逼近任意的非线性函数,可以处理系统内难以解析的规律性,学习收敛速度快 印第安纳州波利斯市 RMSE=12.3%
RF[14] 改良版的袋装回归树。其每一次分裂生长过程中对输入变量的选择都是随机的,且在分裂过程中允许输入其他变量。算法将对节点上的变量和输入变量进行比较,选择影响最大的变量进行分裂生长 训练样本的大小、树的棵数、每个节点选取的随机变量个数 泛化误差有限,不会因为树木棵数的增大而出现过拟合的情况 武汉市 总体精度为
Tab.2  Comparison of machine learning retrieval models of impervious surface
Fig.2  Simulating the ISP by using Logistic function(adapted from Song et al.[48])
[1] Department of Economic and Social Affairs,United Nations . World Urbanization Prospects:The 2007 Revision.Highlights[R]. New York:United Nations, 2008.
[2] Nita A . United nations department of economic and social affairs [C]//South Sudan Northeast African Studies, 2010.
[3] Arnold C L, Gibbons C J . Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
[4] Pang W T, Fok H S, Iz H B . Mapping impervious surface areas from GIS planimetric data[J]. Survey Review, 2008,40(308):108-115.
[5] Wu J, Thompson J . Quantifying impervious surface changes using time series planimetric data from 1940 to 2011 in four central Iowa cities,U.S.A[J]. Landscape and Urban Planning, 2013,120:34-47.
[6] 杨可明, 周玉洁, 齐建伟 , 等. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
doi: 10.6046/gtzyyg.2014.02.22
[6] Yang K M, Zhou Y J, Qi J W , et al. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. Remote Sensing for Land and Resources, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
[7] 张晓萍, 吕颖, 张华国 , 等. 1990―2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
[7] Zhang X P, Lyu Y, Zhang H G , et al. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land and Resources, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
[8] Xian G, Crane M . Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215.
[9] Patel N, Mukherjee R . Extraction of impervious features from spectral indices using artificial neural network[J]. Arabian Journal of Geosciences, 2015,8(6):3729-3741.
[10] 程熙, 沈占锋, 骆剑承 , 等. 利用混合光谱分解与SVM估算不透水面覆盖率[J]. 遥感学报, 2011,15(6):1235-1241.
doi: 10.11834/jrs.20110335
[10] Cheng X, Shen Z F, Luo J C , et al. Estimating impervious surface base on comparison of spectral mixture analysis and support vector machine methods[J]. Journal of Remote Sensing, 2011,15(6):1228-1234.
[11] 高志宏, 张路, 李新延 , 等. 城市土地利用变化的不透水面覆盖度检测方法[J]. 遥感学报, 2010,14(3):600-606.
doi: 10.11834/jrs.20100316
[11] Gao Z H, Zhang L, Li X Y , et al. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping[J]. Journal of Remote Sensing, 2010,14(3):600-606.
[12] 陈征, 胡德勇, 曾文华 , 等. 基于TM图像和夜间灯光数据的区域城镇扩张监测——以浙江省为例[J]. 国土资源遥感, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
doi: 10.6046/gtzyyg.2014.01.15
[12] Chen Z, Hu D Y, Zeng W H , et al. TM image and nighttime light data to monitoring regional urban expansion:A case study of Zhejiang Province[J]. Remote Sensing for Land and Resources, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
[13] Yang L, Huang C, Homer C G , et al. An approach for mapping large-area impervious surfaces:Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
[14] 邵振峰, 张源, 周伟琪 , 等. 基于测绘卫星影像的城市不透水面提取[J]. 地理空间信息, 2016,14(7):1-5.
[14] Shao Z F, Zhang Y, Zhou W Q , et al. Extraction of urban impervious surface based on high resolution remote sensing image[J]. Geospatial Information, 2016,14(7):1-5.
[15] Ridd M K . Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
[16] 赵英时 . 遥感应用分析原理与方法[M].科学出版社, 2003: 315-317.
[16] Zhao Y S. Principle and Method of Remote Sensing Application Analysis[M]. Beijing: Science Press, 2003: 315-317.
[17] Altmann Y, Halimi A, Dobigeon N , et al. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[J]. IEEE Transactions on Image Processing, 2012,21(6):3017-3025.
[18] Fan F, Deng Y . Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,33(12):290-301.
[19] Franke J, Roberts D A, Halligan K , et al. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment, 2009,113(8):1712-1723.
[20] Powell R L, Roberts D A, Dennison P E , et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus,Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
[21] Wu C . Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004,93(4):480-492.
[22] 唐菲, 徐涵秋 . 高光谱与多光谱遥感影像反演地表不透水面的对比——以Hyperion和TM/ETM+为例[J]. 光谱学与光谱分析, 2014,34(4):1075-1080.
[22] Tang F, Xu H Q . Comparison of performances in retrieving impervious surface between hyperspectral (Hyperion) and multis-pectral (TM/ETM+) images[J]. Spectroscopy and Spectral Analysis, 2014,34(4):1075-1080.
[23] Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
[24] Bian J, Li A, Zhang Z , et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model[J]. Remote Sensing of Environment, 2017,197:98-114.
[25] 邓蕾, 赵小锋, 王慧娜 , 等. 城市混合像元分解中土壤与不透水面纯像元选取方法的对比研究——以厦门为例[J]. 遥感技术与应用, 2013,28(6):1039-1045.
[25] Deng L, Zhao X F, Wang H N , et al. Pure pixel collection methods for soil and imprevious surface in urban spectral mixture comparative analysis[J]. Remote Sensing Technology and Application, 2013,28(6):1039-1045.
[26] Bachmann C M, Ainsworth T L, Fusina R A . Improved manifold coordinate representations of large-scale hyperspectral scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2786-2803.
[27] Broadwater J, Banerjee A . A generalized kernel for areal and intimate mixtures [C]//Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.IEEE, 2010: 1-4.
[28] 李慧, 张金区, 曹阳 , 等. 端元可变非线性混合像元分解模型[J]. 测绘学报, 2016,45(1):80-86.
[28] Li H, Zhang J Q, Cao Y , et al. Nonlinear spectral unmixing for optimizing per-pixel endmember sets[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(1):80-86.
[29] Heremans S, Orshoven J V . Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders(Belgium):A multi-criteria comparison[J]. International Journal of Remote Sensing, 2015,36(11):2934-2962.
[30] Kawamura M . Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data [C]//Proceeding Conference of the Japan Society of Civil Engineers, 1996.
[31] Zha Y, Gao J, Ni S . Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
[32] Xu H Q . Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(5):557-565.
[33] Lu D, Tian H, Zhou G , et al. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 2008,112(9):3668-3679.
[34] Zhang Q, Schaaf C, Seto K C . The vegetation adjusted NTL urban index:A new approach to reduce saturation and increase variation in nighttime luminosity[J]. Remote Sensing of Environment, 2013,129:32-41.
[35] Guo W, Lu D, Kuang W . Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data[J]. Remote Sensing, 2017,9(4):375.
[36] Hu D Y, Chen S, Qiao K , et al. Integrating CART algorithm and multi-source remote sensing data to estimate sub-pixel impervious surface coverage:A case study from Beijing Municipality,China[J]. Chinese Geographical Science, 2017,27(4):614-625.
[37] Li C, Wang J, Wang L , et al. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery[J]. Remote Sensing, 2014,6(2):964-983.
[38] Sexton J O, Song X P, Huang C , et al. Urban growth of the Washington,D.C.-Baltimore,MD metropolitan region from 1984 to 2010 by annual,Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2013,129:42-53.
[39] 孙攀, 董玉森, 陈伟涛 , 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
doi: 10.6046/gtzyyg.2016.04.17
[39] Sun P, Dong Y S, Chen W T , et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
[40] 刘会芬, 杨英宝, 于双 , 等. 遥感图像不同融合方法的适应性评价——以ZY-3和Landsat8图像为例[J]. 国土资源遥感, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
doi: 10.6046/gtzyyg.2014.04.11
[40] Liu H F, Yang Y B, Yu S , et al. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. Remote Sensing for Land and Resources, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
[41] Schug F, Okujeni A, Hauer J , et al. Mapping patterns of urban development in Ouagadougou,Burkina Faso,using machine learning regression modeling with bi-seasonal Landsat time series[J]. Remote Sensing of Environment, 2018,210:217-228.
[42] Okujeni A , Linden S V D,Hostert P.Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015,158(10):69-80.
[43] Weng Q, Hu X . Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2397-2406.
[44] Henits L, Mucsi L, Liska C M . Monitoring the changes in impervious surface ratio and urban heat island intensity between 1987 and 2011 in Szeged,Hungary[J]. Environmental Monitoring and Assessment, 2017,189(2):86.
[45] Zhang X P, Pan D L, Chen J Y , et al. Using long time series of Landsat data to monitor impervious surface dynamics:A case study in the Zhoushan Islands[J]. Journal of Applied Remote Sensing, 2013,7(1):073515.
[46] Li M, Zang S, Wu C , et al. Spatial and temporal variation of the urban impervious surface and its driving forces in the central city of Harbin[J]. Journal of Geographical Sciences, 2018,28(3):323-336.
[47] Sexton J O, Noojipady P, Anand A , et al. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change[J]. Remote Sensing of Environment, 2015,156:418-425.
[48] Song X P, Sexton J O, Huang C , et al. Characterizing the magnitude,timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016,175:1-13.
[49] Wang P, Huang C , Eric B D C.Mapping 2000—2010 impervious surface change in India using global land survey Landsat data[J]. Remote Sensing, 2017,9(4):366.
[50] 王春林, 孙金彦, 周绍光 , 等. 影像辅助下LiDAR数据建筑物轮廓信息提取[J]. 国土资源遥感, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
[50] Wang C L, Sun J Y, Zhou S G , et al. Building boundary extraction using LiDAR data and images[J]. Remote Sensing for Land and Resources, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[3] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[4] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[5] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[6] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[7] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[8] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[9] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[10] SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou[J]. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
[11] LIU Hui, QI Zengxiang, HUANG Fuqiang. Spatio-temporal difference and correlation of urbanization with avian habitats in Dongting Lake area[J]. Remote Sensing for Land & Resources, 2020, 32(3): 191-199.
[12] WANG Lingyu, CHEN Quan, WU Yue, ZHOU Zhongfa, DAN Yusheng. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 23-31.
[13] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[14] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[15] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech