|
|
|
|
|
|
A review of research on remote sensing for ground impervious surface percentage retrieval |
Jiaqi ZUO1,2, Zegen WANG1, Jinhu BIAN2( ), Ainong LI2, Guangbin LEI2, Zhengjian ZHANG2 |
1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China |
|
|
Abstract Urban expansion caused by urbanization brings many problems to the social and ecological environment. Monitoring urban change is an entry point to solve these problems. As an important indicator of urban expansion, the impervious surface has become a hotspot of research. The acquisition of impervious surface data and its time series variation analysis are the core of the current study. Compared with early planar map-based impervious surface extraction, remote sensing has been widely used in impervious surface research due to its continuous, rapid and extensive observation of the ground. Multi-source data fusion and multiple retrieval method make constant progress in remote sensing-based retrieval of ground impervious surface percentage, and the focus of the study is gradually shifted from the classification map of impervious surface to the quantitative retrieval of impervious surface percentage. In this paper, the authors summarized the methods of remote sensing retrieval of sub-pixel impervious surface percentage from the perspectives of single period and time series, analyzed the advantages and disadvantages of the retrieval methods in detail, and briefly described and compared the common precision validation method. Finally, the authors summarized the problems existing in the current remote sensing retrieval methods, proposed the corresponding solutions, and pointed out the trend of development in the future.
|
Keywords
impervious surface percentage
quantitative remote sensing retrieval
time series
urbanization
|
|
Corresponding Authors:
Jinhu BIAN
E-mail: bianjinhu@imde.ac.cn
|
Issue Date: 30 August 2019
|
|
|
[1] |
Department of Economic and Social Affairs,United Nations . World Urbanization Prospects:The 2007 Revision.Highlights[R]. New York:United Nations, 2008.
|
[2] |
Nita A . United nations department of economic and social affairs [C]//South Sudan Northeast African Studies, 2010.
|
[3] |
Arnold C L, Gibbons C J . Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
|
[4] |
Pang W T, Fok H S, Iz H B . Mapping impervious surface areas from GIS planimetric data[J]. Survey Review, 2008,40(308):108-115.
|
[5] |
Wu J, Thompson J . Quantifying impervious surface changes using time series planimetric data from 1940 to 2011 in four central Iowa cities,U.S.A[J]. Landscape and Urban Planning, 2013,120:34-47.
|
[6] |
杨可明, 周玉洁, 齐建伟 , 等. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
doi: 10.6046/gtzyyg.2014.02.22
|
[6] |
Yang K M, Zhou Y J, Qi J W , et al. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. Remote Sensing for Land and Resources, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
|
[7] |
张晓萍, 吕颖, 张华国 , 等. 1990―2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
|
[7] |
Zhang X P, Lyu Y, Zhang H G , et al. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land and Resources, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
|
[8] |
Xian G, Crane M . Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215.
|
[9] |
Patel N, Mukherjee R . Extraction of impervious features from spectral indices using artificial neural network[J]. Arabian Journal of Geosciences, 2015,8(6):3729-3741.
|
[10] |
程熙, 沈占锋, 骆剑承 , 等. 利用混合光谱分解与SVM估算不透水面覆盖率[J]. 遥感学报, 2011,15(6):1235-1241.
doi: 10.11834/jrs.20110335
|
[10] |
Cheng X, Shen Z F, Luo J C , et al. Estimating impervious surface base on comparison of spectral mixture analysis and support vector machine methods[J]. Journal of Remote Sensing, 2011,15(6):1228-1234.
|
[11] |
高志宏, 张路, 李新延 , 等. 城市土地利用变化的不透水面覆盖度检测方法[J]. 遥感学报, 2010,14(3):600-606.
doi: 10.11834/jrs.20100316
|
[11] |
Gao Z H, Zhang L, Li X Y , et al. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping[J]. Journal of Remote Sensing, 2010,14(3):600-606.
|
[12] |
陈征, 胡德勇, 曾文华 , 等. 基于TM图像和夜间灯光数据的区域城镇扩张监测——以浙江省为例[J]. 国土资源遥感, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
doi: 10.6046/gtzyyg.2014.01.15
|
[12] |
Chen Z, Hu D Y, Zeng W H , et al. TM image and nighttime light data to monitoring regional urban expansion:A case study of Zhejiang Province[J]. Remote Sensing for Land and Resources, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
|
[13] |
Yang L, Huang C, Homer C G , et al. An approach for mapping large-area impervious surfaces:Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
|
[14] |
邵振峰, 张源, 周伟琪 , 等. 基于测绘卫星影像的城市不透水面提取[J]. 地理空间信息, 2016,14(7):1-5.
|
[14] |
Shao Z F, Zhang Y, Zhou W Q , et al. Extraction of urban impervious surface based on high resolution remote sensing image[J]. Geospatial Information, 2016,14(7):1-5.
|
[15] |
Ridd M K . Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
|
[16] |
赵英时 . 遥感应用分析原理与方法[M].科学出版社, 2003: 315-317.
|
[16] |
Zhao Y S. Principle and Method of Remote Sensing Application Analysis[M]. Beijing: Science Press, 2003: 315-317.
|
[17] |
Altmann Y, Halimi A, Dobigeon N , et al. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[J]. IEEE Transactions on Image Processing, 2012,21(6):3017-3025.
|
[18] |
Fan F, Deng Y . Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,33(12):290-301.
|
[19] |
Franke J, Roberts D A, Halligan K , et al. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment, 2009,113(8):1712-1723.
|
[20] |
Powell R L, Roberts D A, Dennison P E , et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus,Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
|
[21] |
Wu C . Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004,93(4):480-492.
|
[22] |
唐菲, 徐涵秋 . 高光谱与多光谱遥感影像反演地表不透水面的对比——以Hyperion和TM/ETM+为例[J]. 光谱学与光谱分析, 2014,34(4):1075-1080.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ140409000499z6B9Eb
|
[22] |
Tang F, Xu H Q . Comparison of performances in retrieving impervious surface between hyperspectral (Hyperion) and multis-pectral (TM/ETM+) images[J]. Spectroscopy and Spectral Analysis, 2014,34(4):1075-1080.
|
[23] |
Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
|
[24] |
Bian J, Li A, Zhang Z , et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model[J]. Remote Sensing of Environment, 2017,197:98-114.
|
[25] |
邓蕾, 赵小锋, 王慧娜 , 等. 城市混合像元分解中土壤与不透水面纯像元选取方法的对比研究——以厦门为例[J]. 遥感技术与应用, 2013,28(6):1039-1045.
|
[25] |
Deng L, Zhao X F, Wang H N , et al. Pure pixel collection methods for soil and imprevious surface in urban spectral mixture comparative analysis[J]. Remote Sensing Technology and Application, 2013,28(6):1039-1045.
|
[26] |
Bachmann C M, Ainsworth T L, Fusina R A . Improved manifold coordinate representations of large-scale hyperspectral scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2786-2803.
|
[27] |
Broadwater J, Banerjee A . A generalized kernel for areal and intimate mixtures [C]//Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.IEEE, 2010: 1-4.
|
[28] |
李慧, 张金区, 曹阳 , 等. 端元可变非线性混合像元分解模型[J]. 测绘学报, 2016,45(1):80-86.
|
[28] |
Li H, Zhang J Q, Cao Y , et al. Nonlinear spectral unmixing for optimizing per-pixel endmember sets[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(1):80-86.
|
[29] |
Heremans S, Orshoven J V . Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders(Belgium):A multi-criteria comparison[J]. International Journal of Remote Sensing, 2015,36(11):2934-2962.
|
[30] |
Kawamura M . Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data [C]//Proceeding Conference of the Japan Society of Civil Engineers, 1996.
|
[31] |
Zha Y, Gao J, Ni S . Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
|
[32] |
Xu H Q . Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(5):557-565.
|
[33] |
Lu D, Tian H, Zhou G , et al. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 2008,112(9):3668-3679.
|
[34] |
Zhang Q, Schaaf C, Seto K C . The vegetation adjusted NTL urban index:A new approach to reduce saturation and increase variation in nighttime luminosity[J]. Remote Sensing of Environment, 2013,129:32-41.
|
[35] |
Guo W, Lu D, Kuang W . Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data[J]. Remote Sensing, 2017,9(4):375.
|
[36] |
Hu D Y, Chen S, Qiao K , et al. Integrating CART algorithm and multi-source remote sensing data to estimate sub-pixel impervious surface coverage:A case study from Beijing Municipality,China[J]. Chinese Geographical Science, 2017,27(4):614-625.
|
[37] |
Li C, Wang J, Wang L , et al. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery[J]. Remote Sensing, 2014,6(2):964-983.
|
[38] |
Sexton J O, Song X P, Huang C , et al. Urban growth of the Washington,D.C.-Baltimore,MD metropolitan region from 1984 to 2010 by annual,Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2013,129:42-53.
|
[39] |
孙攀, 董玉森, 陈伟涛 , 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
doi: 10.6046/gtzyyg.2016.04.17
|
[39] |
Sun P, Dong Y S, Chen W T , et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
|
[40] |
刘会芬, 杨英宝, 于双 , 等. 遥感图像不同融合方法的适应性评价——以ZY-3和Landsat8图像为例[J]. 国土资源遥感, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
doi: 10.6046/gtzyyg.2014.04.11
|
[40] |
Liu H F, Yang Y B, Yu S , et al. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. Remote Sensing for Land and Resources, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
|
[41] |
Schug F, Okujeni A, Hauer J , et al. Mapping patterns of urban development in Ouagadougou,Burkina Faso,using machine learning regression modeling with bi-seasonal Landsat time series[J]. Remote Sensing of Environment, 2018,210:217-228.
|
[42] |
Okujeni A , Linden S V D,Hostert P.Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015,158(10):69-80.
|
[43] |
Weng Q, Hu X . Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2397-2406.
|
[44] |
Henits L, Mucsi L, Liska C M . Monitoring the changes in impervious surface ratio and urban heat island intensity between 1987 and 2011 in Szeged,Hungary[J]. Environmental Monitoring and Assessment, 2017,189(2):86.
|
[45] |
Zhang X P, Pan D L, Chen J Y , et al. Using long time series of Landsat data to monitor impervious surface dynamics:A case study in the Zhoushan Islands[J]. Journal of Applied Remote Sensing, 2013,7(1):073515.
|
[46] |
Li M, Zang S, Wu C , et al. Spatial and temporal variation of the urban impervious surface and its driving forces in the central city of Harbin[J]. Journal of Geographical Sciences, 2018,28(3):323-336.
|
[47] |
Sexton J O, Noojipady P, Anand A , et al. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change[J]. Remote Sensing of Environment, 2015,156:418-425.
|
[48] |
Song X P, Sexton J O, Huang C , et al. Characterizing the magnitude,timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016,175:1-13.
|
[49] |
Wang P, Huang C , Eric B D C.Mapping 2000—2010 impervious surface change in India using global land survey Landsat data[J]. Remote Sensing, 2017,9(4):366.
|
[50] |
王春林, 孙金彦, 周绍光 , 等. 影像辅助下LiDAR数据建筑物轮廓信息提取[J]. 国土资源遥感, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
|
[50] |
Wang C L, Sun J Y, Zhou S G , et al. Building boundary extraction using LiDAR data and images[J]. Remote Sensing for Land and Resources, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|