Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 110-116     DOI: 10.6046/gtzyyg.2019.01.15
|
Comparison and analysis of estimation models of soil organic matter content established by hyperspectral on ground
Yongmin WANG1, Xican LI2, Linya TIAN1, Bin JIA3, Hui YANG4
1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2.College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
3.CCFED the Third Construction Engineering Co., Zunyi 563000, China
4.School of Transportation, Southeast University, Nanjing 210000, China
Download: PDF(2002 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using the data obtained by hyperspectral techniques to estimate the content of soil organic matter is a hotspot in recent years. For the purpose of determining the effective estimation modeling method, specific data such as reflectance obtained by hyperspectral on ground and organic matter content were used in this paper. Wavelet analysis was used to remove the noise, and continuum removal was used to extract the parameters and compress the data. Combining a variety of different data transformation methods and utilizing BP neural networks, multiple linear regression (MLR) and least squares regression (LSR), many different estimation models of soil were established. It is found that the neural network method is superior to the regression model among various data transformation methods after comparing different estimation models established by the three modeling methods. The optimal estimation model is the model established by the combination of logarithmic square transformation and neural network. The R 2 of the model is 0.933 and the RMSE is 0.069. The authors creatively carried out the data transformation at the modeling factor level and established the good estimation model. It is shown that the learning mechanism of BP + LS model is suitable for hyperspectral estimation of soil organic matter and works well. The methods, models and conclusions of this paper have some reference significance for the hyperspectral estimation of soil organic matter.

Keywords hyperspectra on ground      soil organic matter      data conversion      estimation model      comparative analysis     
:  TP79  
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yongmin WANG
Xican LI
Linya TIAN
Bin JIA
Hui YANG
Cite this article:   
Yongmin WANG,Xican LI,Linya TIAN, et al. Comparison and analysis of estimation models of soil organic matter content established by hyperspectral on ground[J]. Remote Sensing for Land & Resources, 2019, 31(1): 110-116.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.15     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/110
Fig.1  Area of collecting soil samples
样本集 有机质最小值 有机质最大值 有机质平均值 有机质标准差 水含量最小值 水含量最大值 水含量平均值 水含量标准差
总体样本 0.124 1.289 0.600 0.250 0.46 38.65 9.87 7.65
建模样本 0.124 1.289 0.608 0.238 4.83 38.65 9.65 7.62
检验样本 0.176 1.289 0.575 0.241 0.46 35.32 9.97 7.69
Tab.1  Statistical characteristics of soil organic matter content and water content(%)
Fig.2  Comparison of correlation coefficient between spectral reflectance of original and wavelet denoising and organic matter content
Fig.3  Continuum removal results
变换方法 AP DS MP MH MD LM
原始 -0.205 -0.217 -0.196 -0.151 -0.171 0.230
SQ -0.288 -0.380 -0.286 -0.172 -0.365 0.296
RE 0.296 0.357 0.356 0.256 0.386 -0.295
EXP 0.482 -0.534 -0.518 -0.472 -0.484 0.305
LOG -0.390 -0.362 -0.211 -0.209 -0.318 0.295
ES 0.431 -0.437 -0.368 -0.428 -0.499 0.401
LS -0.539 -0.596 -0. 432 -0.631 -0.628 0.521
DE1 -0.282 -0.329 -0.287 -0.273 -0.286 0.224
LGD1 -0.462 -0.309 0.508 0.414 0.511 0.424
EXD1 0.337 -0.321 0.409 0.458 0.406 -0.245
Tab.2  Comparison of correlation coefficient
Fig.4  Comparison of three models’R2and RMSE
参数 方法 SQ RE EXP LOG ES LS DE1 LGD1 EXD1 均值
R2 BP 0.811 0.807 0.885 0.812 0.828 0.933 0.852 0.839 0.841 0.845
MLR 0.778 0.804 0.835 0.731 0.859 0.879 0.792 0.845 0.786 0.812
LSR 0.815 0.797 0.871 0.826 0.833 0.887 0.861 0.847 0.802 0.839
RMSE BP 0.114 0.117 0.081 0.110 0.102 0.069 0.092 0.107 0.105 0.099
MLR 0.122 0.121 0.099 0.131 0.093 0.092 0.118 0.121 0.123 0.113
LSR 0.119 0.125 0.097 0.114 0.115 0.085 0.084 0.092 0.114 0.105
sig BP 0.015 0.019 0.001 0.011 0.006 0.00 0.003 0.013 0.007 0.008
MLR 0.027 0.031 0.033 0.042 0.002 0.001 0.013 0.006 0.035 0.021
LSR 0.019 0.028 0.001 0.021 0.005 0.001 0.002 0.007 0.016 0.011
Tab.3  27 hyperspectral estimation models’ results of test samples
Fig.5  Comparison of predicted and measured values
[1] 王晓 . 土壤含水量高光谱特性与估测模型研究[D]. 泰安:山东农业大学, 2012.
[1] Wang X . Studies on Soil Moisture Hyper-spectrum Characteristics and Estimating Model[D]. Taian:Shandong Agricultural University, 2012.
[2] 邱华旭, 黄张裕, 李希灿 . 土壤性质指标光谱反演数据变换模型研究[J]. 测绘科学, 2013,38(3):131-133.
url: http://d.wanfangdata.com.cn/Periodical/chkx201303043
[2] Qiu H X, Huang Z Y, Li X C . Data transformation model analysis on spectral retrieved deduction of soil properties index[J]. Science of Surveying and Mapping, 2013,38(3):131-133.
[3] 郭超凡, 郭逍宇 . 基于可见光波段包络线去除的湿地植物叶片叶绿素估算[J]. 生态学报, 2016,36(20):6538-6546.
doi: 10.5846/stxb201507091460 url: http://www.cnki.com.cn/Article/CJFDTotal-STXB201620020.htm
[3] Guo C F, Guo X Y . Estimation of wetland plant leaf chlorophyll content based on continuum removal in the visible domain[J]. Acta Ecologica Sinica, 2016,36(20):6538-6546.
[4] Kokaly R F, Clark R N . Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999,67(3):267-287.
doi: 10.1016/S0034-4257(98)00084-4 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425798000844
[5] 陈增文, 陈光水, 钟羡芳 , 等. 基于高光谱遥感的土壤有机碳含量估算研究进展[J]. 亚热带资源与环境学报, 2009,4(1):78-87.
doi: 10.3969/j.issn.1673-7105.2009.01.011 url: http://www.cnki.com.cn/Article/CJFDTotal-FJDL200901012.htm
[5] Chen Z W, Chen G S, Zhong X F , et al. Review on estimation of soil organic carbon content based on hyperspectral measurements[J]. Journal of Subtropical Resources and Environment, 2009,4(1):78-87.
[6] 彭杰, 张杨珠, 周清 , 等. 土壤理化特性与土壤光谱特征关系的研究进展[J]. 土壤通报, 2009,40(5):1204-1208.
url: http://www.cqvip.com/Main/Detail.aspx?id=31591231
[6] Peng J, Zhang Y Z, Zhou Q , et al. The progress on the relationship physics-chemistry properties with spectrum characteristic of the soil[J]. Chinese Journal of Soil Science, 2009,40(5):1204-1208.
[7] 廖钦洪, 顾晓鹤, 李存军 , 等. 基于连续小波变换的潮土有机质含量高光谱估算[J]. 农业工程学报, 2012,28(23):132-139.
doi: 10.3969/j.issn.1002-6819.2012.23.018 url: http://d.wanfangdata.com.cn/Periodical/nygcxb201223020
[7] Liao Q H, Gu X H, Li C J , et al. Estimation of fluvo-aquic soil organic matter content from hyperspectral reflectance based on continuous wavelet transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(23):132-139.
[8] Liu H J, Zhang Y Z, Zhang B , et al. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China[J]. Environmental Monitoring and Assessment, 2009,154(1-4):147-154.
doi: 10.1007/s10661-008-0385-4 pmid: 18560985 url: http://link.springer.com/10.1007/s10661-008-0385-4
[9] Karnieli A, Verchovsky I, Hall J K , et al. Geographic information system for semi-detailed mapping of soils in semi-arid region[J]. Geocarto International, 1998,13(3):29-42.
doi: 10.1080/10106049809354650 url: http://www.tandfonline.com/doi/abs/10.1080/10106049809354650
[10] 沈润平, 丁国香, 魏国栓 , 等. 基于人工神经网络的土壤有机质含量高光谱反演[J]. 土壤学报, 2009,46(3):391-397.
doi: 10.3321/j.issn:0564-3929.2009.03.003 url: http://www.cqvip.com/QK/90156X/200903/30530084.html
[10] Shen R P, Ding G X, Wei G S , et al. Retrieval of soil organic matter content from hyper-spectrum based on ANN[J]. Acta Pedologica Sinica, 2009,46(3):391-397.
[11] 于雷, 洪永胜, 周勇 , 等. 连续小波变换高光谱数据的土壤有机质含量反演模型构建[J]. 光谱学与光谱分析, 2016,36(5):1428-1433.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ161220000146GcJfMi
[11] Yu L, Hong Y S, Zhou Y , et al. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation[J]. Spectroscopy and Spectral Analysis, 2016,36(5):1428-1433.
[12] 彭小婷, 高文秀, 王俊杰 . 基于包络线去除和偏最小二乘的土壤参数光谱反演[J]. 武汉大学学报(信息科学版), 2014,39(7):862-866.
doi: 10.13203/j.whugis20130202 url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH201407020.htm
[12] Peng X T, Gao W X, Wang J J . Inversion of soil parameters from hyperspectra based on continuum removal and partial least squares regression[J]. Geomatics and Information Science of Wuhan University, 2014,39(7):862-866.
[13] 孔玲军 . MATLAB小波分析超级学习手册[M]. 北京: 人民邮电出版社, 2014: 100-160.
[13] Kong L J. Super Learning Manual of Wavelet Analysis Based on MATLAB[M]. Beijing: Posts and Telecom Press, 2014: 100-160.
[14] Ben-Dor E, Banin A . Visible and near infrared(0.4 -1.1 μm) analysis of arid and semiarid soil[J]. Remote Sensing of Environment, 1994,48(3):261-274.
doi: 10.1016/0034-4257(94)90001-9 url: http://linkinghub.elsevier.com/retrieve/pii/0034425794900019
[15] 李希灿, 王静, 李玉环 , 等. 基于模糊集分析的土壤质量指标高光谱反演[J]. 地理与地理信息科学, 2008,24(4):25-28.
url: http://www.cnki.com.cn/Article/CJFDTotal-DLGT200804008.htm
[15] Li X C, Wang J, Li Y H , et al. High spectral retrieved deduction of soil quality index based on fuzzy sets analysis[J]. Geography and Geo-Information Science, 2008,24(4):25-28.
[16] 沈士喆, 张小龙, 衡伟 . 一种自适应阈值的预筛选Harris角点检测方法[J]. 数据采集与处理, 2011,26(2):207-213.
doi: 10.3969/j.issn.1004-9037.2011.02.016
[16] Shen S Z, Zhang X L, Heng W . Improved Harris corner detection algorithm based on auto-adaptive threshold and pre-selection[J]. Journal of Data Acquisition and Processing, 2011,26(2):207-213.
[17] 邓小炼, 王长耀, 亢庆 , 等. 一种基于角点提取的遥感影像地面控制点自适应匹配算法[J]. 宇航学报, 2006,27(1):45-50,88.
doi: 10.3321/j.issn:1000-1328.2006.01.010 url: http://www.cqvip.com/Main/Detail.aspx?id=21176987
[17] Deng X L, Wang C Y, Kang Q , et al. An adaptive matching algorithm for ground control point of remote sensing image based on corner extraction[J]. Journal of Astronautics, 2006,27(1):45-50,88.
[18] 何挺, 王静, 林宗坚 , 等. 土壤有机质光谱特征研究[J]. 武汉大学学报(信息科学版), 2006,31(11):975-979.
doi: 10.3321/j.issn:1671-8860.2006.11.009 url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH200611008.htm
[18] He T, Wang J, Lin Z J , et al. Spectral features of soil organic matter[J]. Geomatics and Information Science of Wuhan University, 2006,31(11):975-979.
[19] 郭斗斗, 黄绍敏, 张水清 , 等. 多种潮土有机质高光谱预测模型的对比分析[J]. 农业工程学报, 2014,30(21):192-200.
doi: 10.3969/j.issn.1002-6819.2014.21.023 url: http://www.cqvip.com/QK/90712X/201421/663011951.html
[19] Guo D D, Huang S M, Zhang S Q , et al. Comparative analysis of various hyperspectral prediction models of fluvo-aquicsoil organic matter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(21):192-200.
[1] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] Junliang HE, Chaoshan HAN, Rui WEI, Zhiyong ZHOU, Qiliang DONG. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land & Resources, 2019, 31(4): 96-103.
[4] CAO Changlei, ZHAO Xuelian, MEI Hongbo. Research on data conversion from MapGIS to shapefile[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 193-197.
[5] GUAN Xiao, ZHOU Ping, CHEN Shengbo. Prediction of soil organic matter content based on ground measured spectra[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 105-111.
[6] YIN Xiaoli, ZHANG Li, XU Junyi, LIU Liangyun. Application of fused data to grassland biomass estimation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 147-154.
[7] NIU Ting, LI Xia, LIN Hai-jun, ZHAO Zhao, DONG Dao-rui. The Construction of the Remote Sensing Estimation Models for Reed Biomass in the Lower Reaches of the Tarim River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 42-45.
[8] LI Xue-yuan, LI Cheng-zun, ZHAO Bo. The Method for Transformation from the Data File Based on ArcGIS Engine to the Shapefile[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 156-160.
[9] LOU Xue-Ting, CENG Yuan, TUN Bing-Fang.
Advances in the Estimation of Above-ground Biomass of Forest Using Remote Sensing
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 1-8.
[10] CHOU Li-Ming, MENG Ji-Hua, WU Bing-Fang, CHEN Xue-Yang, DU Xin, ZHANG Fei-Fei. Research on Standard Preprocessing Flow for HJ-1A HSI Level 2 Data Product[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 77-82.
[11] LI Wen-hui, YU De-qing . A STUDY OF THE TECHNOLOGY FOR REMOTE SENSING INVESTIGATION OF ROCKY DESERTIFICATION IN AREAS OF KARST STONY HILIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(1): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech