Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (4) : 147-154     DOI: 10.6046/gtzyyg.2013.04.24
Technology Application |
Application of fused data to grassland biomass estimation
YIN Xiaoli1,2, ZHANG Li2, XU Junyi1, LIU Liangyun2
1. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
2. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(1907 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to realize the real-time and high-precision monitoring of grassland biomass, the authors established a biomass estimation model for grasslands based on the fused data from the spatial and temporal adaptive reflectance fusion model (STARFM) in this study. Firstly, the authors introduced the STARFM model to fuse the MODIS and the Landsat TM data in Xilin Hot, Inner Mongolia. It was found that NDVI is a better input data for STARFM to achieve high-precision NDVI through comparing reflectance data and NDVI data. The most efficient statistical model, an exponential model, was chosen for estimating biomass based on the high-precision NDVI and the field survey data. Finally, two exponential models were set up respectively, with the fused NDVI and the original MODIS NDVI as independent variables. It was found that R2 increased from 0.761 to 0.832 and RMSE decreased from 32.521g/m2 to 28.653 g/m2 after using the fused NDVI. The results obtained by the authors prove that the fused NDVI can improve the accuracy of the grassland biomass estimation.
Keywords color image      image retrieval and image classification      texture      gray level co-occurrence matrix (GLCM)      texture feature     
:  TP79  
Issue Date: 21 October 2013
E-mail this article
E-mail Alert
Articles by authors
HOU Qunqun
Cite this article:   
HOU Qunqun,WANG Fei,YAN Li. Application of fused data to grassland biomass estimation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 147-154.
URL:     OR
[1] 李建龙,蒋平.遥感技术在大面积天然草地估产和预报中的应用探讨[J].武汉测绘科技大学学报,1998,23(2):153-158. Li J L,Jiang P.The study on the remote sensing technology in estimating and forecasting grassland field applications[J].Journal of Wuhan Technical University of Surveying and Mapping,1998,23(2):153-158.
[2] 查勇,Gao J,倪绍祥.国际草地资源遥感研究新进展[J].地理科学进展,2003,22(6):607-617. Zha Y,Gao J,Ni S X.Most recent progress of international research on remote sensing of grassland resources[J].Progress in Geography,2003,22(6):607-617.
[3] 程红芳,章文波,陈锋.植被覆盖度遥感估算方法研究进展[J].国土资源遥感,2008,20(1):13-18. Cheng H F,Zhang W B,Chen F.Advances in researches on application of remote sensing method to estimating vegetation coverage[J].Remote Sensing for Land and Resources,2008,20(1):13-18.
[4] Todd S W,Hoffer R M,Milchunas D G.Biomass estimation on grazed and ungrazed rangelands using spectral indices[J].International Journal of Remote Sensing,1998,19(3):427-438.
[5] 张连义,宝路如,尔敦扎玛,等.锡林郭勒盟草地植被生物量遥感监测模型的研究[J].中国草地学报,2008,30(1):6-14. Zhang L Y,Bao L R,Erdun Z M,et al.Research on remote sensing models for monitoring grassland vegetation biomass in Xilinguole[J].Chinese Journal of Grassland,2008,30(1):6-14.
[6] Boelman N T,Stieglitz M,Rueth H M,et al.Response of NDVI,biomass,and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra[J].Oecologia,2003,135(3):414-421.doi:10.1007/s00442-003-1198-3.
[7] Asner G P.Cloud cover in Landsat of observations of the Brazilian Amazon[J].International Journal of Remote Sensing,2001,22(18):3855-3862.
[8] Jorgensen P V.Determination of cloud coverage over Denmark using Landsat MSS/TM and NOAA-AVHRR[J].International Journal of Remote Sensing,2000,21(17):3363-3368.doi:10.1080/014311600750019976.
[9] Ju J C,Roy D P.The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally[J].Remote Sensing of Environment,2008,112(3):1196-1211.
[10] Price J C.How unique are spectral signatures?[J].Remote Sensing of Environment,1994,49(3):181-186.
[11] Gao F,Masek J G,Schwaller M,et al.On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218.
[12] Hilker T,Wulder M A,Coops N C,et al.Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model[J].Remote Sensing of Environment,2009,113(9):1988-1999.
[13] Devendra S.Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data[J].International Journal of Applied Earth Observation and Geoinformation,2011,13(1):59-69.
[14] Watts J D,Powell S L,Lawrence R L,et al.Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery[J].Remote Sensing of Environment,2011,115(1):66-75.
[15] 朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498. Piao S L,Fang J Y,He J S,et al.Spatial distribution of grassland biomass in China[J].Acta Phytoecologica Sinica,2004,28(4):491-498.
[16] Zhu X L,Chen J,Gao F,et al.An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J].Remote Sensing of Environment,2010,114(11):2610-2623.doi:10.1016/j.rse.2010.05.032.
[17] Walker J J,de Beurs K M,Wynne R H,et al.Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology[J].Remote Sensing of Environment,2012,117:381-393.doi:10.1016/j.rse.2011.10.014.
[18] 杨英莲,邱新法,殷青军.基于MODIS增强型植被指数的青海省牧草产量估产研究[J].气象,2007,33(6):102-107. Yang Y L,Qiu X F,Yin Q J.Study on monitoring system of Qinghai grassland output based MODIS EVI data[J].Meteorological Monthly,2007,33(6):102-107.
[19] 李素英,李晓兵,莺歌,等.基于植被指数的典型草原区生物量模型:以内蒙古锡林浩特市为例[J].植物生态学报,2007,31(1):23-31. Li S Y,Li X B,Ying G,et al.Vegetation indexes biomass models for typical semi_arid steppe:A case study for Xilinhot in northern China[J].Journal of Plant Ecology,2007,31(1):23-31.
[20] Xie Y C,Sha Z Y,Yu M,et al.A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia,China[J].Ecological Modelling,2009,220(15):1810-1818.
[1] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[2] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[3] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[4] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[5] GAO Kaixuan, JIAO Haiming, WANG Xinchuang. Inversion model of forest canopy height based on image texture,spectral and topographic features[J]. Remote Sensing for Land & Resources, 2020, 32(3): 63-70.
[6] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[7] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[8] Shangwang LIU, Liuyang GAO, Bo WANG. Research on image denoising algorithm of joint bilateral filter and wavelet threshold shrinkage[J]. Remote Sensing for Land & Resources, 2018, 30(2): 114-124.
[9] Li YAN, Xun GONG, Hong XIE. Phase correlation supported feature track- matching algorithm for repeating texture[J]. Remote Sensing for Land & Resources, 2018, 30(1): 1-6.
[10] WANG Yu, FU Meichen, WANG Li, WANG Changyao. Tree-cotton intercropping land extraction based on multi-source high resolution satellite imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 152-159.
[11] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
[12] HUA Yongchun, LI Zengyuan, GAO Zhihai, GUO Zhong. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
[13] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[14] ZHANG Enbing, QIN Kun, YUE Mengxue, ZHANG Ye, ZENG Cheng. Feature description and extraction of residential area based on variogram function and grid division[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 149-155.
[15] XIANG Shengwen, WEN Gongjian, GAO Feng. Knowledge driven change detection method for aircraft targets[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 77-82.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech