Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (1) : 1-8     DOI: 10.6046/gtzyyg.2011.01.01
Review |

Advances in the Estimation of Above-ground Biomass of Forest Using Remote Sensing
 LOU Xue-Ting, CENG Yuan, TUN Bing-Fang
(Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China)
Download: PDF(735 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Above-ground biomass of forest has great research and application value in the forest ecological system. There are mainly three types of models for estimating above-ground biomass of forest, i.e., forest measuring method, remote sensing method and integrated method. Remote sensing technique has become an important means for obtaining above-ground biomass of forest at the regional scale. There are mainly four types of remote sensing models, namely empirical, ANN, physical and NPP based models. This paper has analyzed and discussed the present methods for estimating above-ground biomass of forest based on remote sensing as well as their advantages and disadvantages. Finally, this paper points out that the integrated method combining remote sensing technique and forest succession model can be generally used to estimate above-ground biomass of forest at the regional scale in future.

Keywords SAR      TM      Spatial profile     
: 

TP 79

 
Issue Date: 22 March 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
LOU Xue-Ting, CENG Yuan, TUN Bing-Fang.
Advances in the Estimation of Above-ground Biomass of Forest Using Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES,2011, 23(1): 1-8.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.01.01     OR     https://www.gtzyyg.com/EN/Y2011/V23/I1/1

[1]于贵瑞.全球变化与陆地生态系统碳循环和碳累积[M].北京:气象出版社,2003.

[2]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.

[3]赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8):1468-1472.

[4]马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1-10.

[5]孟宪宇.测树学[M].北京:中国林业出版社,1995.

[6]阮成江,李代琼.黄土丘陵区沙棘地上部生物量估测模型[J].陕西林业科技,1999(2):5-9.

[7]许景伟,王卫东,王月海,等.沿海沙质岸黑松人工林生物量的估测数学模型[J].山东林业科技,2004(5):47-49.

[8]余青兰,李军乔.蕨麻生物量变化与气候因子关系数学模型的建立[J].中国野生植物资源,2008,27(5):53-55.

[9]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002,48(2):243-249.

[10]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.

[11]王志杰,梅盛龙,李美琴,等.基于TS/PDA森林植物多样性监测方法研究[J].林业资源管理,2009(2):118-122.

[12]陈春祥.基于FoxPro及ArcView GIS布设调查样地的方法[J].林业调查规划,2008,33(5):17-20.

[13]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-332.

[14]Prince S,Goward S.Global Primary Production:A Remote Sensing Approach[J].Biogeography,1995(22):815-835.

[15]李仁东,刘纪远.应用Landsat ETM数据估算鄱阳湖湿生植被生物量[J].地理学报,2001,56(5):533.

[16]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):16.

[17]周磊,辛晓平,李刚,等.高光谱遥感在草原监测中的应用[J].草业科学,2009,26(4):20-27.

[18]何祺胜,陈尔学,曹春香,等.基于LiDAR数据的森林参数反演方法研究[J].地球科学进展,2009,24(7):748-754.

[19]Holmgren J,Nilsson M,Olsson H.Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning[J].Forest Science,2003,49(3):419-428.

[20]张宏斌.基于多源遥感数据的草原植被状况变化研究[D].北京:中国农业科学院,2007.

[21]吴展波.基于3S的湖北鹿门寺林场马尾松林生物量估测模型研究[D].武汉:华中师范大学,2008.

[22]Dabrowska-Zielinska K,Gruszczynska M,Lewinski S,et al.Application of Remote and Insitu Information to the Management of Wetlands in Poland[J].Journal of Environmental Management,2009(90):2261-2269.

[23]Mirco B,Stefano B,Pietro A B.Assessment of Pasture Production in the Italian Alps Using Spectrometric and Remote Sensing Information[J].Agriculture,Ecosystems and Environment,2007(118):267-272.

[24]池宏康.黄土高原地区提取植被信息方法的研究[J].植物学报,1996,38(1):40-44.

[25]武红敢,乔彦友,陈林洪,等.马尾松林叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.

[26]黄德双.神经网络模式识别系统理论[M].北京:电子工业出版社,1996.

[27]何红艳,郭志华,肖文发.遥感在森林地上生物量估算中的应用[J].生态学杂志,2007,26(8):1317-1322.

[28]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108-111.

[29]王立海,邢艳秋.基于人工神经网络的天然林生物量遥感估测[J].应用生态学报,2008,19(2):261-266.

[30]韩爱惠.森林生物量及碳储量遥感监测方法研究[D].北京:北京林业大学,2009.

[31]李小文,Strahler A H,朱启疆,等.基本颗粒构成的粗糙表面二向扫射一相互遮蔽效应的几何光学模型[J].科学通报,1993,38:86-89.

[32]安树杰,张晓丽,王震,等.生物量估测中的遥感技术[J].林业调查规划,2006,31(3):1-5.

[33]张小全,徐德应,赵茂盛.林冠结构、辐射传输与冠层光合作用研究综述[J].林业科学研究,1999,12(4):411-421.

[34]阮伟利,牛铮.利用统计和物理模型反演植物生化组分的比较[J].中国科学院研究生院学报,2004,121(11):78-83.

[35]Andres Kuusk,Mait Lang,Tiit Nilson.Simulation of the Reflectance of Ground Vegetation in Sub-Boreal Forests[J].Agricultural and Forest Meteorology,2004,126:33-46.

[36]冯晓明.多角度MISR数据用于区域生态环境定量遥感研究[D].北京:中国科学院研究生院,2006.

[37]Verhoef W.Light Scattering by Leaf Layers with Applications to Canopy Reflectance Modeling:the SAIL Model [J].Remote Sensing of Environment,1984(16):125-141.

[38]Jacquemoud S,Verhoef W,Baret F,et al.PROSPECT+SAIL Models:A Review of Use for Vegetation Characterization[J].Remote Sensing of Environment,2009,113:56-66.

[39]Koetz B,Sun G,Morsdorf F,et al.Fusion of Imaging Spectrometer and LiDAR Data Over Combined Radiative Transfer Models for Forest Canopy Characterization[J].Remote Sensing of Environment,2007,106:449-459.

[40]Li X,Strahler A H.A Geometric-Optical Bi-Directional Reflection Modeling of a Conifer Forest Canopy [J].IEEE Transact Geosciences Remote Sensing,1985(GE-22):906-919.

[41]徐希孺.遥感物理[M].北京:北京大学出版社,2005.

[42]Peddle D R,Johnson R L,Cihlar J,et al.Large Area Forest Classification and Biophysical Parameter Estimation Using the 5-Scale Canopy Reflectance Model in Mutiple-Forward-Mode [J].Remote Sensing of Environment, 2004(89):252-263.

[43]Zeng Y,Schaepman M,Wu B F,et al.Quantitative Forest Canopy Structure Assessment Using an Inverted Geometric-optical Model and Upscaling[J].International Journal of Remote Sensing,2009,30(6):1385-1406.

[44]Zeng Y,Schaepman M,Wu B F,et al.Scaling-based Forest Structure Change Detection Using an Inverted Geometric-optical Model in the Three Gorges Region of China[J].Remote Sensing of Environment,2008,112(12):4261-4271.

[45]Mark C,Moisen G G,Sua L,et al.Large Area Mapping of Southwestern Forest Crown Cover,Canopy Height,and Biomass Using the NASA Multiangle Imaging Spectro-Radiometer [J].Remote Sensing of Environment,2008,112(5):2051-2063.

[46]Mark C,Nolin A,Moisen G G,et al.Forest Canopy Height from the Multiangle Imaging Spectroradiometer (MISR) Assessed with High Resolution Discrete Return LiDAR[J].Remote Sensing of Environment,2009(113):2172-2185.

[47]Smith B,Knorr W,Widlowski J L.Combining Remote Sensing Data with Process Modelling to Monitor Boreal Conifer Forest Carbon Balances[J].Forest Ecology and Management,2008(255):3985-3994.

[48]Uchijima Z,Seino H.Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetation Ⅰ.Chikugo Model for Evaluating Productivity [J].J Agric Meteor,1985(40):343-353.

[49]Lieth H F H.Patterns of Primary Production in the Biosphere[Z].Dowden &Ross,Inc,Pennsylvania.1978.

[50]Adamsa B,White A,Mlenton T.An Analysis of Some Diverse Approaches to Modelling Terrestrial Net Primary Productivity[J].Ecological Modelling,2004(177):353-391.

[51]Sellers P,Los S,Tucker C.A Revised Lan Surface Paramterization (SiB2) for Atmosheric Gcms Part Ⅱ:The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data [J].Climate,1996(9):706-737.

[52]Prieto-Blanco A,North P R J,Barnsley M J,et al.Satellite-Driven Modelling of Net Primary Productivity (NPP):Theoretical Analysis[J].Remote Sensing of Environment,2009(113):137-147.

[53]彭少麟,张桂莲,柳新伟.生态系统模拟模型的研究进展[J].热带亚热带植物学报,2005,13(1):85-94.

[54]彭少麟,郭志华,王伯荪.利用GIS和RS估算广东植被光利用率[J].生态学报,2000,20(6):903-909.

[55]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608.

[56]于振良,赵士洞,董立荣,等.长白落叶松林林分动态研究[J].吉林林学院学报,1996,12(2):73-75.

[57]桑卫国,陈灵芝,王喜武.东灵山地区落叶阔叶林长期动态的模拟[J].植物生态学报,2000,24(2):180-185.

[58]周丹卉,贺红士,孙国臣,等.林窗模型及其在全球气候变化研究中的应用[J].生态学杂志,2007,26(8):1303-1310.

[59]桑卫国,马克平,陈灵芝,等.森林动态模型概论[J].植物学通报,1999,16(3):193-200.

[60]Running S W.Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simulation[J].Ecology,1989,70(4):1090-1101.

[61]Urban D L.A Versatile Model to Simulate Forest Pattern:A User Guide to ZELIG[M].Version 1.0,Environmental Sciences Dept,University of Virginia,Charlottesville,VA,1990.

[62]Friend A D,Stivens A K,Knox R G,et al.A Process—Based,Terrestrial Biosphere Model of Ecosystem Dynamics(Hybrid V3.O)[J].Ecological Modeling,1997,(95):247-287.

[63]GAstellu-Etchegorry J P,Bruinquel-Pinel V.A Modeling Approach to Assess the Robustness of Spectrometric Predictive Equations for Canopy Chemistry [J].Remote Sensing of Environment,2001(76):1-15.

[64]刘清旺.机载激光雷达森林参数估测方法研究[D].北京:中国林业科学研究院,2009.

[65]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.

[1] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[2] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[5] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[6] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[7] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[8] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[9] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[10] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[11] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[12] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[13] TIAN Lei, FU Wenxue, SUN Yanwu, JING Linhai, QIU Yubao, LI Xinwu. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images[J]. Remote Sensing for Land & Resources, 2021, 33(1): 214-220.
[14] JIANG Shan, WANG Chun, SONG Hongli, LIU Yufeng. A study of crop planting type recognition based on SAR and optical remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 105-110.
[15] SUN Chao, CHEN Zhenjie, WANG Beibei. Expansion monitoring of construction land based on SAR time series: A case study of Xinbei District, Changzhou[J]. Remote Sensing for Land & Resources, 2020, 32(4): 154-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech