Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 121-129     DOI: 10.6046/zrzyyg.2020399
|
Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature
LI Teya(), SONG Yan(), YU Xinli, ZHOU Yuanxiu
School of Geography and Information Engineering, China University of Geosciences(Wuhan), Wuhan 430000, China
Download: PDF(2839 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The iron and steel industry is a very important part in economic development. Obtaining the knowledge of the monthly production of steel companies is conducive to the macro control of the economy and the rational allocation of resources. In this paper, a monthly production estimation model for steel companies was proposed based on the grading results of the surface temperature obtained from the inversion of satellite thermal infrared data as well as the theory and method of landscape pattern indices. The surface temperature anomalous values and the thermal landscape distribution parameters of steel companies can be calculated according to the vector data of the spatial framework of steel companies. Based on this and the actual monthly production data of two typical steel companies in Central China and North China, the estimation model was established through the least-squares fitting, and the coefficient of determination (R2) of the model was greater than 0.9. According to the posterior variance test results, the accuracy of the estimation model proposed in this study is level 2. Meanwhile, the actual production values all fall within the 95% confidence interval of the estimation values. All these comprehensively reflect the monthly production model proposed in this paper are highly accurate.

Keywords thermal infrared remote sensing      landscape pattern index      steelmaking monthly production estimation model      posterior variance test     
ZTFLH:  TP79  
Corresponding Authors: SONG Yan     E-mail: liteya@cug.edu.cn;songyan@cug.edu.cn
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Teya LI
Yan SONG
Xinli YU
Yuanxiu ZHOU
Cite this article:   
Teya LI,Yan SONG,Xinli YU, et al. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020399     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/121
Fig.1  Schematic diagram of thermal radiation of steelmaking workshop
Fig.2  The modeling workflow of steelmaking monthly production estimation model
参数 含义 与实际值
间相关性
Shp/S 高温工作斑块面积/总体斑块面积 0.817
NPhp 高温工作斑块数目 0.574
NPhnp 高温非工作斑块数目 -0.704
NPm 中温斑块数目 0.464
NPl 低温斑块数目 -0.339
NP 总体斑块数目 -0.087
|NPhp- NPhnp- NPl |/NP -0.920
|NPhp- NPl |/NP -0.841
|NPhp- NPhnp |/NP 0.816
|NPhp- NPhnp- NPm |/NP 0.420
|NPhp- NPm |/NP 0.403
Tab.1  Correlation between parameters and actual monthly production
精度等级 C P
1级(良好) C<0.35 P>0.95
2级(合格) 0.35≤C<0.50 0.80<P≤0.95
3级(勉强) 0.50≤C<0.65 0.70<P≤0.80
4级(不合格) C≥0.65 P≤0.70
Tab.2  Grade of fitting accuracy
表面孤立温度
区温度值/℃
四邻域表面温度值/℃ 结果
图3(b) 38.764 38.982, 39.175, 39.120, 38.614 保留
图3(d) 45.191 47.324, 47.274, 47.196, 46.680 剔除
Tab.3  Isolated temperature region and four-neighborhood temperature
Fig.3  Boxplot analysis of surface isolated temperature region
时间 残差Yj-
Y j 0
残差百分比(Yj-
Y j 0)/ Yj×100%
2017年2月 -4.409 -3.50%
2017年10月 -1.889 -1.35%
2017年12月 -0.601 -0.45%
2018年7月 -4.372 -3.13%
2018年9月 -3.800 -2.76%
2018年10月 1.736 1.24%
2018年11月 1.554 1.12%
2020年2月 -7.575 -6.47%
均值 -2.419 -1.91%
Tab.4  The residual and residual percentage between actual values for validation and SMPE values
Fig.4  The curves of actual values for validation and SMPE values
参数 y - e - S1 S2 C P
数值 134.080 -2.419 7.772 3.019 0.388 1
Tab.5  The SMPE precision verification parameters of enterprise A
Fig.5  Confidence interval of SMPE (Confidence level = 95%)
Fig.6  Boxplot analysis of surface isolated temperature region
时间 残差Yj-
Y j 0
残差百分比(Yj-
Y j 0)/ Yj×100%
2013年7月 3.163 4.52%
2013年8月 3.369 4.22%
2014年7月 0.770 1.01%
2016年5月 1.019 1.39%
2017年4月 -0.826 -1.06%
均值 1.499 2.02%
Tab.6  The residual and residual percentage between actual values for validation and SMPE values
Fig.7  The curves of actual values for validation and SMPE values
参数 y - e - S1 S2 C P
均值 75.528 1.499 3.604 1.576 0.438 1
Tab.7  The SMPE precision verification parameters of enterprise B
Fig.8  Confidence interval of SMPE (Confidence level = 95%)
[1] Wu Y. The Chinese steel industry:Recent developments and prospects[J]. Resources Policy, 2000,26(3):171-178.
doi: 10.1016/S0301-4207(00)00026-X url: https://linkinghub.elsevier.com/retrieve/pii/S030142070000026X
[2] Hua L Z, Zhang X X, Nie Q, et al. The impacts of the expansion of urban impervious surfaces on urban heat islands in a coastal city in China[J]. Sustainability, 2020,12(2):475.
doi: 10.3390/su12020475 url: https://www.mdpi.com/2071-1050/12/2/475
[3] 董家集, 任华忠, 郑逸童, 等. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020,32(3):165-172.doi: 10.6046/gtzyyg.2020.03.22.
doi: 10.6046/gtzyyg.2020.03.22
[3] Dong J J, Ren H Z, Zhen Y T, et al. A study of the livability of urban environment based on multi-source remote sensing data:A case study of Beijing City[J]. Remote Sensing for Land and Resources, 2020,32(3):165-172.doi: 10.6046/gtzyyg.2020.03.22.
doi: 10.6046/gtzyyg.2020.03.22
[4] Arslan E, Erenoglu R C. Assessment of hotspots using sparse autoencoder in industrial zones[J]. Environmental Monitoring and Assessment, 2019,191(7):453.
doi: 10.1007/s10661-019-7572-3 pmid: 31222399
[5] 李静, 孙强强, 张平, 等. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019,31(1):220-228.doi: 10.6046/gtzyyg.2019.01.29.
doi: 10.6046/gtzyyg.2019.01.29
[5] Li J, Sun Q Q, Zhang P, et al. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land and Resources, 2019,31(1):220-228.doi: 10.6046/gtzyyg.2019.01.29.
doi: 10.6046/gtzyyg.2019.01.29
[6] 吴未, 许丽萍, 张敏, 等. 不同斑块类型的景观指数粒度效应响应——以无锡市为例[J]. 生态学报, 2016,36(9):2740-2749.
[6] Wu W, Xu L P, Zhang M, et al. Impact of landscape metrics on grain size effect in different types of patches:A case study of Wuxi City[J]. Acta Ecologica Sinica, 2016,36(9):2740-2749.
[7] 唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017,46(10):1482-1491.
[7] Tang X M, Wang H Y, Zhu X Y, et al. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1482-1491.
[8] 田国良, 柳钦火, 陈良富. 热红外遥感[M]. 北京: 电子工业出版社, 2014.
[8] Tian G L, Liu Q H, Chen L F. Thermal remote sensing[M]. Beijing:Publishing House of Electronics Industry, 2014.
[9] Walker M L, Dovoedo Y H, Chakraborti S, et al. An improved boxplot for univariate data[J]. The American Statistician, 2018,72(4):348-353.
doi: 10.1080/00031305.2018.1448891 url: https://www.tandfonline.com/doi/full/10.1080/00031305.2018.1448891
[10] 张玉敏. 基于攀钢炼钢厂车间布局视角的SLP优化设计研究[J]. 物流技术, 2013,32(5):418-421,442.
[10] Zhang Y M. An SLP perspective on layout optimization for steel-making workshops of Pangang[J]. Logistics Technology, 2013,32(5):418-421,442.
[11] Sekertekin A, Kutoglu S H, Kaya S. Evaluation of spatio-temporal variability in Land Surface Temperature:A case study of Zonguldak,Turkey[J]. Environmental Monitoring & Assessment, 2016,188(1):1-15.
[12] El-Hattab M, Amany S M, Lamia G E. Monitoring and assessment of urban heat islands over the Southern region of Cairo Governorate,Egypt[J]. The Egyptian Journal of Remote Sensing and Space Science, 2018,21(3):311-323.
doi: 10.1016/j.ejrs.2017.08.008 url: https://linkinghub.elsevier.com/retrieve/pii/S1110982317301114
[13] Mujabar P S. Spatial-temporal variation of land surface temperature of Jubail Industrial City,Saudi Arabia due to seasonal effect by using Thermal Infrared Remote Sensor (TIRS) satellite data[J]. Journal of African Earth Sciences, 2019,155:54-63.
doi: 10.1016/j.jafrearsci.2019.03.008
[14] Nádudvari A, Abramowicz A, Maniscalco R, et al. The estimation of lava fow temperatures using Landsat night-time images:Case studies from eruptions of Mt. Etna and Stromboli (Sicily,Italy),Kīlauea (Hawaii Island),and Eyjafallajökull and Holuhraun (Iceland)[J]. Remote Sensing, 2020,12(16):2537.
doi: 10.3390/rs12162537 url: https://www.mdpi.com/2072-4292/12/16/2537
[15] 李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016,20(5):899-920.
[15] Li Z L, Duan S B, Tang B H, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. Journal of Remote Sensing, 2016,20(5):899-920.
[16] 王猛猛. 地表温度与近地表气温热红外遥感反演方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[16] Wang M M. Methodology development for retrieving land surface temperature and near suface air temperature based on thermal infrared Remote Sensing[D]. Beijing:The University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth), 2017.
[17] Dash P, Göttsche F M, Olesen F S, et al. Land surface temperature and emissivity estimation from passive sensor data:Theory and practice-current trends[J]. International Journal of Remote Sensing, 2002,23(13):2563-2594.
doi: 10.1080/01431160110115041 url: https://www.tandfonline.com/doi/full/10.1080/01431160110115041
[18] Wang Y N, Wei F F, Sun C Q, et al. The research of improved grey GM (1,1) model to predict the postprandial glucose in type 2 diabetes[J]. BioMed Research International, 2016: 6837052.
[19] 朱军桃, 李亚威, 熊东旭, 等. 建筑物沉降监测中的改进灰色模型[J]. 测绘科学, 2017,42(11):85-91.
[19] Zhu J T, Li Y W, Xiong D X, et al. An improved grey mode in the building settlement monitoring[J]. Science of Surveying and Mapping, 2017,42(11):85-91.
[20] Tavares M, Cunha A, Motta-marques D, et al. Comparison of methods to estimate lake-surface-water temperature using Landsat7 ETM+ and MODIS imagery:Case study of a large shallow subtropical lake in southern Brazil[J]. Water, 2019,11(1):168.
doi: 10.3390/w11010168 url: http://www.mdpi.com/2073-4441/11/1/168
[21] Wang M M, Zhang Z J, Hu T, et al. A practical single-channel algorithm for land surface temperature retrieval:Application to Landsat series data[J]. Journal of Geophysical Research Atmospheres, 2019,124(1):299-316.
[22] 陈瀚阅, 朱利, 李家国, 等. 基于Landsat8数据的2种海表温度反演单窗算法对比——以红沿河核电基地海域为例[J]. 国土资源遥感, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.
doi: 10.6046/gtzyyg.2018.01.07
[22] Chen H Y, Zhu L, Li J G, et al. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land and Resources, 2018,30(1):45-53.doi: 10.6046/gtzyyg.2018.01.07.
doi: 10.6046/gtzyyg.2018.01.07
[23] 徐双, 李飞雪, 张卢奔, 等. 长沙市热力景观空间格局演变分析[J]. 生态学报, 2015,35(11):3743-3754.
[23] Xu S, Li F X, Zhang L B, et al. Spatiotemporal changes of thermal environment landscape pattern in Changsha[J]. Acta Ecologica Sinica, 2015,35(11):3743-3754.
[24] Williamson D F, Parker R A, Kendrick J S. The box plot:A simple visual method to interpret data[J]. Annals of Internal Medicine, 1989,110(11):916-921.
pmid: 2719423
[25] 潘明慧, 兰思仁, 朱里莹, 等. 景观格局类型对热岛效应的影响——以福州市中心城区为例[J]. 中国环境科学, 2020,40(6):2635-2646.
[25] Pan M H, Lan S R, Zhu L Y, et al. Influence of landscape pattern types on heat island effect over central Fuzhou City[J]. China Environmental Science, 2020,40(6):2635-2646.
[26] 陈云浩, 李晓兵, 史培军, 等. 上海城市热环境的空间格局分析[J]. 地理科学, 2002(3):317-323.
[26] Chen Y H, Li X B, Shi P J, et al. Study on spatial pattern of urban heat environment in Shanghai City[J]. Scientia Geographica Sinica, 2002(3):317-323.
[27] 梁顺林, 李小文, 王锦地. 定量遥感: 理念与算法[M]. 北京: 科学出版社, 2013: 23.
[27] Liang S L, Li X W, Wang J D. Remote sensing:Concept and algorithm[M]. Beijing: Science Press, 2013: 23.
[28] 张仁华, 田静, 李召良, 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:地球科学, 2010,40(2):211-222.
[28] Zhang R H, Tian J, Li Z L, et al. Principles and methods for the validation of quantitative remote sensing products[J]. Scientia Sinica(Terrae), 2010,40(2):211-222.
[29] Cheng C T, Luo B, Miao S M, et al. Mid-term electricity market clearing price forecasting with sparse data:A case in newly-reformed Yunnan electricity market[J]. Energies, 2016,9(10):804.
doi: 10.3390/en9100804 url: http://www.mdpi.com/1996-1073/9/10/804
[30] 周松林, 茆美琴, 苏建徽. 风电功率短期预测及非参数区间估计[J]. 中国电机工程学报, 2011,31(25):10-16.
[30] Zhou S L, Mao M Q, Su J H. Short-term forecasting of wind power and non-parametric confidence interval estimation[J]. Proceedings of the CSEE, 2011,31(25):10-16.
[31] Lampton M. Damping-undamping strategies for the Levenberg-Marquardt nonlinear least-squares method[J]. Computers in Physics, 1997,11(1):110-115.
doi: 10.1063/1.168600 url: http://scitation.aip.org/content/aip/journal/cip/11/1/10.1063/1.168600
[32] Petrá I, Bednárová D. Total least squares approach to modeling:A Matlab toolbox[J]. Acta Montana Slovaca, 2010,15(2):158-170.
[1] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[2] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[3] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[4] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[5] Hanyue CHEN, Li ZHU, Jiaguo LI, Xieyu FAN. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land & Resources, 2018, 30(1): 45-53.
[6] GUAN Zhen, WU Hong, CAO Cui, HUANG Xiaojuan, GUO Lin, LIU Yan, HAO Min. Uranium ore prediction based on inversion of ETM+6-γ mineral information in Huashan granite area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 92-98.
[7] WEN Shaoyan, QU Chunyan, SHAN Xinjian, YAN Lili, SONG Dongmei. Satellite thermal infrared background field variation characteristics of the Qilian Mountains and the Capital Zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 138-144.
[8] MA Hong-Zhang, LIU Qin-Huo, WEN Jian-Guang, SHI Jian. The Numerical Simulation and Difference Analysis of Soil Temperature on Thermal Infrared and L Bands[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 26-32.
[9] XU Yong-Meng, QIN Zhi-Hao, WAN Hong-Xiu.
Advances in the Study of Near Surface Air Temperature Retrieval from Thermal Infrared Remote Sensing
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 9-14.
[10] YU Yan-Mei, GAN Fu-Ping, ZHOU Ping, YAN Bo-Kun. A PRELIMINARY STUDY AND APPLICATION OF THE MARTIAN MINERAL MAPPING METHODS BASED
ON THERMAL INFRARED REMOTE SENSING DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 35-39.
[11] CHEN Feng, HE Bao-Yin, LONG Zhan-Yong, YANG Xiao-Qin. A SPATIAL ANALYSIS OF URBAN HEAT ISLAND AND UNDERLYING SURFACE USING LANDSAT ETM+[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 56-61.
[12] LIU Ji-Ping, ZHU Hai-Yan. THE DETECTION OF THERMAL FIELD CHANGE IN URBAN AND SUBURBAN AREAS OF WUHAN CITY
WITH TM/ETM+ DATA AND AN ANALYSIS OF THE AFFECTING FACTORS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 39-41.
[13] GAN Fu-Ping, CHEN Wei-Chao, ZHANG Xu-Jiao, YAN Bai-Kun, LIU Sheng-Wei, YANG Su-Ming. THE PROGRESS IN THE STUDY OF THERMAL INFRARED REMOTE
SENSING FOR RETRIEVING LAND SURFACE TEMPERATURE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 6-11.
[14] Zhang Renhua . SOME THINKING ON QUANTIATIVE THERMAL INFRARED REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(1): 1-6.
[15] Zhou Yanru . THE APPLICATION OF THERMAL INFRARED REMOTE SENSING TECHNIQUES IN GEOTHERMAL SURVEYING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech