Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 34-42     DOI: 10.6046/zrzyyg.2022005
|
An optimization method of DEM resolution for land type statistical model of coastal zones
JIANG Na1(), CHEN Chao2(), HAN Haifeng1
1. Shandong Provincial Institute of Land Surveying and Mapping, Ji’nan 250013, China;
2. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
Download: PDF(3547 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Accurate, detailed, and three-dimensional land type statistical data with an appropriate resolution is greatly significant for the natural resources monitoring, supervision, and ecological protection in coastal zones. A land type statistical model needs the support of DEM. However, there is little studies on the adaptability between the DEM resolution and the statistical model. Given this, this study proposed an optimization method of DEM resolution for land type statistical model of coastal zones. Specifically, this study systematically explored the impacts of DEM resolution on land type statistical model, selected indices and constructed an assessment model from four aspects, namely statistical accuracy, generality, information amount, and calculation efficiency. Then, this study determined the index weight using the entropy weight method and obtained the optimal DEM resolution through weighted calculation. The results are as follows. ①An increase in the DEM resolution led to the increasingly apparent negative impacts on the statistical accuracy and information amount and the increasingly significant positive effects on the generalization of the model. ②To meet the requirements of statistical accuracy, the DEM resolution should not exceed 30 m. Meanwhile, as required by the landform generalization, the DEM resolution should not be less than 10 m. ③There is a linear positive correlation between the calculation time of spatial operations and the number of DEM grids. ④Based on the comprehensive assessment using the weights calculated by the entropy weight method, the optimal DEM resolution was 10 m. The method of DEM resolution developed in this paper is universal and can be expanded in the natural resource statistics of coastal zones and in the land type statistics of other surveys and monitoring.

Keywords coastal zone      land type statistics      DEM resolution      information entropy      entropy weight method     
ZTFLH:  TP79  
Corresponding Authors: CHEN Chao     E-mail: jiangna123321@163.com;chenchao@zjou.edu.cn
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Na JIANG
Chao CHEN
Haifeng HAN
Cite this article:   
Na JIANG,Chao CHEN,Haifeng HAN. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022005     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/34
Fig.1  DEM resolution evaluation model
Fig.2  Technical flow chart
Fig.3  Topography of the study area
Fig.4  Topographic performance of 2 m, 5 m, 10 m, 20 m, 30 m and 50 m DEM
DEM空间
尺度/m
地表平
整系数
最小值/m 最大值/m 均值/m
2 0.977 6 -79.0 1 130.7 49.563 6
5 0.981 5 -79.0 1 129.6 49.563 6
10 0.985 1 -78.9 1 129.9 49.563 6
15 0.986 7 -79.0 1 127.7 49.563 6
20 0.987 9 -79.0 1 127.5 49.563 7
30 0.989 4 -78.8 1 126.2 49.563 6
40 0.990 5 -78.8 1 111.1 49.564 1
50 0.991 3 -78.8 1 123.3 49.563 5
60 0.992 0 -78.8 1 103.8 49.563 8
70 0.992 6 -78.7 1 109.2 49.561 1
80 0.993 1 -78.7 1 092.1 49.564 5
90 0.993 5 -78.7 1 111.1 49.562 3
100 0.993 9 -78.7 1 098.6 49.566 4
Tab.1  Relationship between topographic statistical features and DEM resolution
Fig.5  Variation of surface flatness coefficient and maximum deviation rate with DEM resolution
DEM空
间尺度/m
耕地 园地 林地 草地 房屋
建筑区
铁路与
道路
构筑物 人工
堆掘地
荒漠与
裸露地表
水域 整体
偏差
偏差率
均方根
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.34 0.23 0.28 0.43 0.05 0.84 1.01 0.47 1.77 1.58 0.20 0.89
10 0.54 0.19 0.28 0.03 0.38 3.61 0.69 0.33 8.56 0.34 0.15 2.96
15 0.64 0.64 0.39 0.07 0.94 3.33 0.75 2.50 4.34 0.56 0.18 1.97
20 0.44 1.10 1.21 0.17 3.06 7.58 1.93 0.93 5.37 0.68 0.02 3.22
30 0.66 0.42 1.62 0.06 3.43 8.34 3.43 2.73 8.35 2.54 0.12 4.24
40 1.50 2.83 3.27 3.51 0.99 8.35 10.99 4.46 2.19 2.00 0.08 5.03
50 4.30 7.01 2.81 2.68 4.25 7.52 14.10 3.99 16.26 6.39 0.07 8.23
60 6.17 3.79 1.76 3.58 6.13 3.30 1.36 2.17 6.58 2.52 0.04 4.16
70 7.21 6.98 3.64 0.15 17.34 14.98 2.16 9.98 14.13 5.00 0.03 9.84
80 1.53 9.25 2.71 14.39 11.08 39.75 4.29 2.99 52.30 0.85 0.11 21.84
90 1.64 10.47 2.96 1.75 0.98 22.68 7.02 10.30 31.67 15.14 0.24 14.24
100 4.66 16.06 5.37 14.51 1.09 73.81 14.25 2.34 1.37 16.89 0.08 25.42
Tab.2  Relationship between DEM resolution and statistical accuracy of land types(10-4)
Fig.6  Example of linear figure
Fig.7  Relationship between statistical deviation rate of small target features and DEM resolution
DEM空间尺度/m (0,2]° (2,3]° (3,5]° (5,6]° (6,8]° (8,10]° (10,15]°
2 5.29 71.85 13.19 8.02 0.96 0.52 0.11 0.05
5 0.59 86.83 8.65 3.62 0.25 0.06 0 0
10 0.17 95.73 3.89 0.21 0 0 0 0
15 0 99.63 0.37 0 0 0 0 0
20 0 99.72 0.28 0 0 0 0 0
30 0 100.00 0 0 0 0 0 0
Tab.3  Statistics of distribution in slope zones in residential area at different DEM resolutions (%)
Fig.8  Variation of information entropy of slope zone and elevation zone with DEM resolution
Fig.9  Variation of information entropy and information entropy loss rate of vegetation slope zone with DEM resolution
Fig.10  Variation of number of spots in slope zone and calculation time with DEM resolution
一级指标 二级指标 指标性质/
尺度影响
熵权
准确性 地表平整系数偏离度 负向/负向 0.070 6
最小值偏差 负向/负向 0.043 0
最大值偏差 负向/负向 0.050 1
地类面积偏差 负向/负向 0.058 6
小目标地形统计偏差 负向/负向 0.072 2
线状地物地形统计偏差 负向/负向 0.081 9
信息量 坡度信息熵 正向/负向 0.069 0
高度带信息熵 正向/负向 0.074 4
地类信息熵 正向/负向 0.055 8
林地坡度信息熵 正向/负向 0.068 4
概括性 微地形概括 负向/正向 0.198 8
计算效率 DEM格网数据量 负向/正向 0.157 1
Tab.4  Determination of index weight by entropy weight method
[1] 李清泉, 卢艺, 胡水波, 等. 海岸带地理环境遥感监测综述[J]. 遥感学报, 2016, 20(5):1216-1229.
[1] Li Q Q, Lu Y, Hu S B, et al. Review of remotely sensed geo-environmental monitoring of coastal zones[J]. Journal of Remote Sensing, 2016, 20(5):1216-1229.
[2] 陈超, 陈慧欣, 陈东, 等. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 自然资源遥感, 2021, 33(2):141-152.doi: 10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
[2] Chen C, Chen H X, Chen D, et al. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan islands[J]. Remote Sensing for Land and Resources, 2021, 33(2):141-152.doi: 10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
[3] 杨长坤, 刘召芹, 王崇倡, 等. 2001—2013年辽东湾海岸带空间变化分析[J]. 自然资源遥感, 2015, 27(4):150-157.doi: 10.6046/gtzyyg.2015.04.23.
doi: 10.6046/gtzyyg.2015.04.23
[3] Yang C K, Liu Z Q, Wang C C, et al. Spatial change analysis of the coastal zone of Liaodong Bay from 2001 to 2013[J]. Remote Sensing for Land and Resources, 2015, 27(4):150-157.doi: 10.6046/gtzyyg.2015.04.23.
doi: 10.6046/gtzyyg.2015.04.23
[4] 李秀梅, 袁承志, 李月洋. 渤海湾海岸带遥感监测及时空变化[J]. 自然资源遥感, 2013, 25(2):156-163.doi: 10.6046 /gtzyyg.2013.02.26.
doi: 10.6046 /gtzyyg.2013.02.26
[4] Li X M, Yuan C Z, Li Y Y. Remote sensing monitoring and spatial-temporal variation of Bohai Bay coastal zone[J]. Remote Sensing for Land and Resources, 2013, 25(2):156-163.doi: 10.6046 /gtzyyg.2013.02.26.
doi: 10.6046 /gtzyyg.2013.02.26
[5] 董春, 张继贤, 刘纪平, 等. 高精度地理数据空间统计分析模型与方法[J]. 遥感信息, 2016, 31(1):13-19.
[5] Dong C, Zhang J X, Liu J P, et al. Models and methods of spatial statistics and analysis based on high-precision data[J]. Remote Sensing Information, 2016, 31(1):13-19.
[6] 秦承志, 呼雪梅. 栅格数字地形分析中的尺度问题研究方法[J]. 地理研究, 2014, 33(2):270-283.
doi: 10.11821/dlyj201402007
[6] Qin C Z, Hu X M. Review on scale-related researches in grid-based digital terrain analysis[J]. Geographical Research, 2014, 33(2):270-283.
[7] 陈楠, 林宗坚, 李成名, 等. 1:10 000及1:50 000比例尺DEM信息容量的比较——以陕北韭园沟流域为例[J]. 测绘科学, 2004, 29(3):39-41.
[7] Chen N, Lin Z J, Li C M, et al. A comparison on DEM of different scale in loess hill and gully area[J]. Science of Surveying and Mapping, 2004, 29(3):39-41.
[8] 邓仕虎, 杨勤科. DEM采样间隔对地形描述精度的影响研究[J]. 地理与地理信息科学, 2010, 26(2):23-26.
[8] Deng S H, Yang Q K. Study on the influence of sampling interval on DEM representation accuracy[J]. Geography and Geo-Information Science, 2010, 26(2):23-26.
[9] 汤国安, 刘学军, 房亮, 等. DEM及数字地形分析中尺度问题研究综述[J]. 武汉大学学报(信息科学版), 2006, 31(12):1059-1066.
[9] Tang G A, Liu X J, Fang L, et al. A review on the scale issue in DEMs and digital terrain analysis[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12):1059-1066.
[10] 李发源, 汤国安, 贾旖旎, 等. 坡谱信息熵尺度效应及空间分异[J]. 地球信息科学, 2007, 9(4):13-18.
[10] Li F Y, Tang G A, Jia Y N, et al. Scale effect and spatial distribution of slope spectrum’s information entropy[J]. Geo-Information Science, 2007, 9(4):13-18.
[11] 潘换换, 吴树荣, 姬倩倩, 等. 山西煤田生态系统服务时空格局及驱动力[J]. 应用生态学报, 2021, 32(11):3923-3932.
[11] Pan H H, Wu S R, Ji Q Q, et al. Spatio-temporal pattern and driving forces of ecosystem services in coalfields of Shanxi Province,China[J]. Chinese Journal of Applied Ecology, 2021, 32(11):3923-3932.
[12] 毋亭, 吴启航, 曹文琦, 等. DEM分辨率对苏北地区耕地土壤有机碳制图精度的影响研究[J/OL]. 中国农业资源与区划,(2021-0901)[2021-11-28].http://kns.cnki.net/kcms/detail/11.3513.S.20210831.1715.016.html.
url: http://kns.cnki.net/kcms/detail/11.3513.S.20210831.1715.016.html.
[12] Wu T, Wu Q H, Cao W Q, et al. Research about what effect DEM resolution has on the digital soil organic carbon mapping for cultivated area in the north of Jiangsu Province[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning,(2021 -09-01)[2021-11-28].https://kns.cnki.net/kcms/detail/11.3513.S.20210831.1715.016.html.
url: https://kns.cnki.net/kcms/detail/11.3513.S.20210831.1715.016.html.
[13] 郭春香, 梁音, 曹龙熹. 基于四种分辨率DEM的侵蚀模型地形因子差异分析[J]. 土壤学报, 2014, 51(3):482-489.
[13] Guo C X, Liang Y, Cao L X. Geomorphic factors in DEM-based soil erosion models as affected by resolution[J]. Acta Pedologica Sinica, 2014, 51(3):482-489.
[14] 高玉芳, 陈耀登, 蒋义芳, 等. DEM 数据源及分辨率对HEC-HMS水文模拟的影响[J]. 水科学进展, 2015, 26(5):624-630.
[14] Gao Y F, Chen Y D, Jiang Y F, et al. Effects of DEM source and resolution on the HEC-HMS hydrological simulation[J]. Advances in Water Science, 2015, 26(5):624-630.
[15] 沈定涛, 王结臣, 张煜, 等. 一种面向海量数字高程模型数据的洪水淹没区快速生成算法[J]. 测绘学报, 2014, 43(6):645-652.
[15] Shen D T, Wang J C, Zhang Y, et al. A quick flood inundation algorithm based on massive DEM data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):645-652.
[16] 王婷, 潘军, 蒋立军, 等. 基于DEM的地形因子分析与岩性分类[J]. 自然资源遥感, 2018, 30(2):231-237.doi: 10.6046/gtzyyg.2018.02.31.
doi: 10.6046/gtzyyg.2018.02.31
[16] Wang T, Pan J, Jiang L J, et al. Topographic variable analysis and lithologic classification based on DEM[J]. Remote Sensing for Land and Resources, 2018, 30(2):231-237.doi: 10.6046/gtzyyg.2018.02.31.
doi: 10.6046/gtzyyg.2018.02.31
[17] 杨荣凤, 杨昆, 洪亮, 等. 基于不同空间分辨率DEM的地形因子分析比较[J]. 云南师范大学学报(自然科学版), 2018, 38(5):75-78.
[17] Yang R F, Yang K, Hong L, et al. Comparison of terrain factor analysis based on DEM with different spatial resolution[J]. Journal of Yunnan Normal University(Natural Science Edition), 2018, 38(5):75-78.
[18] 国务院第一次全国地理国情普查领导小组办公室编著. 地理国情普查基本统计[M]. 北京: 测绘出版社, 2013:3-8.
[18] Office of the Leading Group for the First National Geographic Survey of China. Basic statistics of the National Geographic Survey[M]. Beijing: Surveying and Mapping Press, 2013:3-8.
[19] 国家测绘局测绘标准化研究所. CH/T 9009.2—2010 基础地理信息数字成果1:5 000, 1:10 000,1:25 000,1:50 000,1:100 000数字高程模型[S]. 北京: 测绘出版社, 2010.
[19] Institute of Surveying and Mapping Standardization of the State Bureau of Surveying and Mapping. CH/T 9009.2—2010 Digital products of fundamental geographic information 1:5 000,1:10 000,1:25 000,1:50 000,1:100 000 digital elevation models[S]. Beijing: Surveying and Mapping Press, 2010.
[20] 袁卫平. 地理统计空间计算效率优化模型研究[D]. 阜新:辽宁工程技术大学, 2015.
[20] Yuan W P. Research on the optimization model of the spatial computation of geographical statistics[D]. Fuxin:Liaoning University of Engineering and Technology, 2015.
[21] 江娜. 山东省地理国情信息综合统计分析技术与实现[J]. 山东国土资源, 2018, 34(6):65-69.
[21] Jiang N. Technology and realization of comprehensive statistical analysis of China geography information in Shandong Province[J]. Shandong Land and Resources, 2018, 34(6):65-69.
[22] 朱伟, 王东华, 周晓光. 基于信息熵的DEM最佳分辨率确定方法研究[J]. 遥感信息, 2008(5):79-82.
[22] Zhu W, Wang D H, Zhou X G. The research of optimizing DEM resolution based on information entropy[J]. Remote Sensing Information, 2008(5):79-82.
[23] 陶旸, 汤国安, 王春, 等. DEM地形信息量计算的不确定性研究[J]. 地理科学, 2010, 30(3):398-402.
[23] Tao Y, Tang G A, Wang C, et al. Uncertainty of terrain information content based on grid DEM[J]. Scientia Geographica Sinica, 2010, 30(3):398-402.
[24] 陈楠, 林宗坚, 汤国安, 等. 数字高程模型的空间信息不确定性分析[J]. 测绘通报, 2005(11):14-17.
[24] Chen N, Lin Z J, Tang G A, et al. Analysis of spatial information uncertainty from DEM[J]. Bulletin of Surveying and Mapping, 2005(11):14-17.
[25] 周程明. 基于熵权TOPSIS法的城市旅游高质量发展评价研究——以广东省21个城市为例[J]. 西南师范大学学报(自然科学版), 2021, 46(7):58-66.
[25] Zhou C M. Evaluation of high quality development of urban tourism based on entropy weight and TOPSIS method:A case study of 21 cities in Guangdong Province[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(7):58-66.
[26] 倪九派, 李萍, 魏朝富, 等. 基于AHP和熵权法赋权的区域土地开发整理潜力评价[J]. 农业工程学报, 2009, 25(5):202-209.
[26] Ni J P, Li P, Wei C F, et al. Potentialities evaluation of regional land consolidation based on AHP and entropy weight method[J]. Transactions of the CSAE, 2009, 25(5):202-209.
[27] 祁于娜, 王磊. 层次分析-熵值定权法应用于山区城镇地质灾害易发性评价[J]. 测绘通报, 2021(6):112-116.
[27] Qi Y N, Wang L. Application of AHP-entropy weight method in hazards susceptibility assessment in mountain town[J]. Bulletin of Surveying and Mapping, 2021(6):112-116.
[1] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[2] YAN Bokun, GAN Fuping, YIN Ping, GE Xiaoli, GUO Yi, BAI Juan. Remote sensing observations of tidal flats, shorelines, and aquacultural water bodies along coastal zones in China mainland during 1989—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 53-63.
[3] SHI Shushu, DOU Yinyin, CHEN Yongqiang, KUANG Wenhui. Remote sensing monitoring based analysis of the spatio-temporal changing characteristics of regional urban expansion and urban land cover in China’s coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(4): 76-86.
[4] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
[5] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[6] Yachao HAN, Qi LI, Yongjun ZHANG, Zihong GAO, Dachang YANG, Jie CHEN. Geometric calibration method of airborne hyperspectral instrument and its demonstration application in coastal airborne remote sensing survey[J]. Remote Sensing for Land & Resources, 2020, 32(1): 60-65.
[7] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[8] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[9] LIU Rongjie, ZHANG Jie, LI Xiaomin, MA Yi. Position precision evaluation of ZY-3 satellite image in the coastal zone of China[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 141-145.
[10] LI Zhen, HUANG Hai-Jun. Land Use and Land Cover Change of the Coastal Zone Around Jiaozhou Bay[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 71-76.
[11] WU Jun-Ping, MAO Zhi-Hua, CHEN Jian-Yu, BAI Yan, CHEN Xiao-Dong, PAN De-Lu. A METHOD FOR CLASSIFICATION OF COASTAL ZONE REMOTELY
SENSED IMAGES BY ADDING SPACE INFORMATION
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(3): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech