Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 164-172     DOI: 10.6046/zrzyyg.2021329
|
ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau
MA Shanmu1,2(), GAN Fuping3(), WU Huaichun1,2, YAN Bokun3
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
2. School of Ocean Sciences, China University of Geosciences(Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(5300 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The variation in the water levels of lakes is an important indicator for the study of changes in climate and ecological environment and water resources rating. It was previously difficult for altimetry satellites to monitor small and medium-sized lakes, but the newly launched ICESat-2 satellite can improve the monitoring comprehensiveness and precision of lakes’ water levels. Based on the data coverage of ICESat-2 satellite land observation products, the high-precision dynamic monitoring of water levels was conducted for 473 lakes covering an area greater than 1 km2 in the Qinghai-Tibet Plateau from October 2018 to April 2021. The spatio-temporal variations of water levels of these lakes were analyzed from three aspects: the overall variations in the water levels of lakes in the Qinghai-Tibet Plateau, the basin-scaled and regional variations in the water levels of lakes, and the monthly or quarterly variation trends of water levels of typical lakes. The study results are as follows. In the past three years, the water levels of lakes in the Qinghai-Tibet Plateau continuously rose, with an average annual rate of variation of 0.013 m/a. The water levels of large, medium-sized, and small lakes rose significantly, rose gently, and dropped slightly, respectively. In terms of spatial distribution, the water levels of lakes in each basin generally showed an upward trend, and most of the lakes with declining water levels had relatively high elevations. During the monitoring period, the water level of Siling Co Lake rose by 1 m and that of Kering Tso Lake declined by 1 m. This study provides the latest monitoring data on the water levels of some lakes on the Qinghai-Tibet Plateau, which are conducive to the study of dynamic variation monitoring of lakes.

Keywords lake level      spatio-temporal variation      ICESat-2 satellite      Qinghai-Tibet Plateau     
ZTFLH:  TP79  
Corresponding Authors: GAN Fuping     E-mail: mashanmu@163.com;fpgan@aliyun.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shanmu MA
Fuping GAN
Huaichun WU
Bokun YAN
Cite this article:   
Shanmu MA,Fuping GAN,Huaichun WU, et al. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3): 164-172.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021329     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/164
Fig.1  Technical route
湖泊名称 月水位重
复数/个
相关系数 均方根
误差/m
扎日南木措 29 0.776 0.171
赤布张错 21 0.834 0.194
昂孜错 22 0.846 0.152
色林错 31 0.717 0.232
兹格塘错 9 0.122 0.263
阿雅格库 26 0.752 0.237
纳木错 28 0.613 0.264
格仁错 27 0.795 0.343
多格错仁强错 18 0.870 0.077
鄂陵湖 22 0.798 0.293
青海湖 21 0.736 0.247
可可西里湖 20 0.957 0.102
勒斜武担错 21 0.934 0.152
达则错 20 0.925 0.141
阿其克库勒湖 20 0.884 0.256
吐错 16 0.933 0.098
乌兰乌拉湖 23 0.596 0.124
哈拉湖 19 0.913 0.171
Tab.1  Comparison between the ICESat-2 time series and the Hydroweb and G-REALM water levels
湖泊名称 ICESat-2水位 Hydroweb水位
最大值 最小值 均值 最大值 最小值 均值
扎日南木错 0.17 0.02 0.06 0.08 0.03 0.04
赤布张错 0.13 0.03 0.06 0.06 0.01 0.03
昂孜错 0.07 0.02 0.05 0.36 0.01 0.05
色林错 0.19 0.04 0.10 0.08 0.02 0.04
兹格塘错 0.10 0.02 0.05 1.10 0.16 0.35
阿雅格库 0.13 0.02 0.04 0.16 0.02 0.07
纳木错 0.14 0.03 0.06 0.09 0.02 0.04
格仁错 0.08 0.01 0.04 0.65 0.03 0.12
多格错仁强错 0.09 0.01 0.04 0.07 0 0.03
鄂陵湖 0.12 0.01 0.07 0.24 0.03 0.08
青海湖 0.10 0.04 0.07 0.27 0.02 0.10
可可西里湖 0.10 0.01 0.05 0.16 0.03 0.07
勒斜武担错 0.08 0.02 0.04 1.00 0.02 0.12
达则错 0.06 0.01 0.04 0.25 0.01 0.04
阿其克库勒湖 0.24 0.03 0.13 0.14 0.03 0.08
吐错 0.10 0.01 0.05 0.29 0.04 0.21
乌兰乌拉湖 0.20 0.01 0.11 1.36 0.12 0.23
哈拉湖 0.05 0.01 0.03 0.18 0.09 0.13
Tab.2  Comparison between the Hydroweb water levels and water levels obtained from ICESat-2 data(m)
Fig.2  Distribution of lake level change trends of the lakes on the Qinghai-Tibet Plateau
湖泊面积范围/km2 湖泊数量/个 年均变化率/
(m·a-1)
上升湖泊数量/个 年均上升率/
(m·a-1)
下降湖泊数量/个 年均下降率/
(m·a-1)
>500 12 0.017 10 0.023 2 -0.017
[200,500] 25 0.008 16 0.021 9 -0.015
[100,200) 33 0.010 20 0.025 13 -0.014
[50,100) 52 0.005 31 0.017 21 -0.011
[10,50) 141 -0.002 64 0.017 77 -0.018
[1,10) 210 -0.001 80 0.026 130 -0.017
Tab.3  Lake level change trends of 473 lakes on the Qinghai-Tibet Plateau(2018—2021)
Fig.3  Histogram of lake level change trends of the lakes on the Qinghai-Tibet Plateau
Fig.4  Distribution of lake level change trends of the lakes in the Inner Plateau
Fig.5  Proportion of different changing trends of lake level in each basin
流域 湖泊数量/个 上升湖泊
数量/个
年均上升
率/(m·a-1)
上升湖泊总
面积/km2
下降湖泊
数量/个
年均下降
率/(m·a-1)
下降湖泊总
面积/km2
柴达木流域 18 10 0.024 673 8 -0.009 315
长江源流域 35 23 0.017 277 12 -0.005 325
黄河源流域 15 9 0.025 121 6 -0.012 1 204
青海湖流域 2 2 0.015 4 391 0
雅鲁藏布江流域 18 7 0.027 71 11 -0.015 93
印度河流域 18 9 0.015 826 9 -0.008 610
内高原北部流域 121 50 0.019 6 127 71 -0.019 2 240
内高原中部流域 126 49 0.016 3 816 77 -0.021 1 825
内高原南部流域 102 54 0.029 9 628 48 -0.012 2 789
河西走廊流域 3 3 0.031 612 0
恒河流域 7 3 0.054 29 4 -0.017 50
Tab.4  Lake level change trends of the lakes of each basin in the Qinghai-Tibet Plateau(2018—2021)
Fig.6  Changes of water level of typical lakes from 2018 to 2021
[1] Zhang Q, Liu C L, Xu C Y, et al. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin,China[J]. Journal of Hydrology, 2006, 324(1-4):255-265.
doi: 10.1016/j.jhydrol.2005.09.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169405004907
[2] Wan W, Long D, Hong Y, et al. A lake data set for the Tibetan Plateau from the 1960s,2005,and 2014[J]. Scientific Data, 2016, 3:160039.
doi: 10.1038/sdata.2016.39 url: https://doi.org/10.1038/sdata.2016.39
[3] 高乐, 廖静娟, 刘焕玲, 等. 卫星雷达测高的应用现状及发展趋势[J]. 遥感技术与应用, 2013, 28(6):978-983.
[3] Gao L, Liao J J, Liu H L, et al. Applying status and development tendency of satellite Radar altimeter[J]. Remote Sensing Technolo-gy and Application, 2013, 28(6):978-983.
[4] Hwang C, Cheng Y S, Han J, et al. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-family altimeters:Climate implication[J]. Remote Sensing, 2016, 8(6):446.
doi: 10.3390/rs8060446 url: http://www.mdpi.com/2072-4292/8/6/446
[5] Gao L, Liao J, Shen G. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using Radar altimeter data (2002—2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1):073470.
doi: 10.1117/1.JRS.7.073470 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.7.073470
[6] Song C, Huang B, Ke L, et al. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 2014(514):131-144.
[7] Chen J, Liao J. Monitoring lake level changes in China using multi-altimeter data (2016—2019)[J]. Journal of Hydrology, 2020, 590:125544.
doi: 10.1016/j.jhydrol.2020.125544 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169420310040
[8] 姜卫平, 褚永海, 李建成, 等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报(信息科学版), 2008(1):64-67.
[8] Jiang W P, Chu Y H, Li J C, et al. Water level variation of Qinghai Lake from altimeteric data[J]. Geomatics and Information Science of Wuhan University, 2008(1):64-67.
[9] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.
[9] Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.
[10] 吴红波, 陈艺多. 联合Landsat影像和ICESat测高数据估计青海湖湖泊水量变化[J]. 水资源与水工程学报, 2020, 31(5):7-15,22.
[10] Wu H B, Chen Y D. Estimation of lake water storage change of Qinghai Lake based on the ICESat satellite altimetry data and Landsat satellite imageries[J]. Journal of Water Resources and Water Engineering, 2020, 31(5):7-15,22.
[11] 廖静娟, 薛辉, 陈嘉明. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化[J]. 遥感学报, 2020, 24(12):1534-1547.
[11] Liao J J, Xue H, Chen J M. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data[J]. Journal of Remote Sensing, 2020, 24(12):1534-1547.
[12] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 2019(221):247-259.
[13] Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.
doi: 10.1109/JPROC.2009.2034765 url: http://ieeexplore.ieee.org/document/5461025/
[14] Markus T, Neumann T, Martino A, et al. The ice,cloud,and land elevation satellite-2 (ICESat-2):Science requirements,concept,and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273.
doi: 10.1016/j.rse.2016.12.029 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716305089
[15] Li G Y. Earth observing satellite laser altimeter data processing method and engineer practice[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1691.
[16] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
doi: 10.1038/nature20584 url: https://doi.org/10.1038/nature20584
[17] Grill G, Lehner B, Thieme M, et al. Mapping the world’s free-flowing rivers[J]. Nature, 2019, 569(7755):215-221.
doi: 10.1038/s41586-019-1111-9 url: https://doi.org/10.1038/s41586-019-1111-9
[18] Birkett C M, Reynolds C A, Deeb E J, et al. G-REALM:A lake/reservoir monitoring tool for water resources and regional security assessment[C]// American Geophysical Union Fall Meeting, 2018.
[19] Cretaux J F, Jelinski W, Calmant S, et al. SOLS:A lake database to monitor in the near real time water level and storage variations from remote sensing data[J]. Advances in Space Research, 2011, 47(9):1497-1507.
doi: 10.1016/j.asr.2011.01.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117711000287
[20] Yamazaki D, Ikeshima D, Sosa J, et al. MERIT Hydro:A high-resolution global hydrography map based on latest topography dataset[J]. Water Resources Research, 2019, 55(6):5053-5073.
doi: 10.1029/2019WR024873
[21] Cooley S W, Ryan J C, Smith L C. Human alteration of global surface water storage variability[J]. Nature, 2021, 591(7848):78-81.
doi: 10.1038/s41586-021-03262-3 url: https://doi.org/10.1038/s41586-021-03262-3
[22] Luo S, Song C, Zhan P, et al. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2[J]. Catena, 2021, 200:105177.
doi: 10.1016/j.catena.2021.105177 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816221000369
[23] Zhang G Q, Yao T D, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geo-physical Research Letters, 2017, 44(11):5550-5560.
doi: 10.1002/2017GL073773 url: https://onlinelibrary.wiley.com/doi/10.1002/2017GL073773
[24] Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 2014, 112:79-91.
doi: 10.1016/j.gloplacha.2013.12.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0921818113002713
[25] Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189:11-18.
[1] WANG Zekun, GAN Fuping, YAN Bokun, LI Xianqing, LI Hemou. Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress[J]. Remote Sensing for Natural Resources, 2022, 34(3): 1-9.
[2] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[3] Hongzhu HAN, Jianjun BAI, Bo ZHANG, Gao MA. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Land & Resources, 2018, 30(4): 125-131.
[4] XING Yu. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 99-107.
[5] ZHAO Fu-yue, ZHANG Rui-jiang, CHEN Hua, SUN Yan-gui. Study of Qinghai-Tibet Plateau Uplift Response to Eco-geological Environment Based on Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 116-121.
[6] YAN Yun-Peng, HE Zheng-Min. The Design and Implementation of Remote Sensing Monitoring Database System for Eco-geological Environment of Qinghai-Tibet Plateau Based on Arc Engine Techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 35-38.
[7] ZHAO Fu-Yue. A Tentative Discussion on the Continental Glacial Sheet in East Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 39-44.
[8] ZHANG Rui-Jiang, FANG Hong-Bin, ZHAO Fu-Yue, ZENG Fu-Nian. Remote Sensing Survey of Existing Glaciers in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 45-48.
[9] ZHANG Rui-Jiang, FANG Hong-Bin, ZHAO Fu-Yue. The Evolution of Existing Glaciers in the Past 30 Years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 49-53.
[10] ZHANG Rui-Jiang. The Relationship Between the Evolution of Glaciers and the Geological Hazards in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 54-58.
[11] ZHANG Rui-Jiang, ZHAO Fu-Yue, FANG Hong-Bin, ZENG Fu-Nian. Remote Sensing Survey of Existing Snowlines in the Past 30 Years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 59-63.
[12] SUN Yan-Gui, ZHANG Kun, YU Jing-Hui, MA Shi-Bin. Eastward Migration of the Watershed of Inflow and Outflow Rives in the Mid-southern Qinghai-Tibet Plateau and the “Nagqu Movement”[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 64-68.
[13] SUN Rui-Jing, SHI Jian-Cheng, WANG Yong-Qian.
The Improvement of Soil Moisture Estimation Using ERS Scatterometer Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 10-13.
[14] JIA Shen-Yue, XIAO Peng-Feng. THE MONITORING OF LAKE CHANGE IN SOUTH QIANGTANG AREA OF QINGHAI-TIBET PLATEAU USING MULTI-TEMPORAL TUPU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 78-81.
[15] WANG Yong-Qian, SHI Jian-Cheng, JIANG Ling-Mei, DU Jin-Yang, SUN Rui-Jing, TIAN Bang-Sen. THE APPLICATION OF REMOTE SENSING DATA TO ANALYZING THE INFLUENCE OF WATER/THERMAL CONDITIONS ON LAI OF QINGHAI- TIBET PLATEAU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(4): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech