Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 1-9     DOI: 10.6046/zrzyyg.2021322
|
Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress
WANG Zekun1,2(), GAN Fuping3(), YAN Bokun3, LI Xianqing1,2, LI Hemou1,2
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology(Beijing), Beijing 100083, China
2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(815 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Snow depth and snow water equivalent are critical elements for snow cover observation and are greatly significant in fields such as cryosphere, global climate change, and water resource surveys. Microwave remote sensing is superior to both visible-light and near-infrared remote sensing in snow cover observation. This study systematically summarized the research results of the passive microwave remote sensing in the inversion of snow depth and snow water equivalent. It organized three types of snow cover observation methods, i.e., field surveys, long-term observations at ground stations, and regional observations based on satellite remote sensing, as well as major snow cover parameters to be observed. Furthermore, it summarized and evaluated three inversion algorithms, i.e., semi-empirical method, physical model, and machine learning. Finally, this study presented the results of the snow cover in the Qinghai-Tibet Plateau observed using passive microwave remote sensing, predicted the future development trend of remote sensing-based inversion of snow cover parameters, and put forward scientific suggestions for the in-depth implementation of the inversion of snow depth and snow water equivalent passive microwave remote sensing.

Keywords snow depth and snow water equivalent      passive microwave      inversion algorithm      snow cover observation      Qinghai-Tibet Plateau     
ZTFLH:  TP79  
Corresponding Authors: GAN Fuping     E-mail: zkwang0324@163.com;fpgan@aliyun.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zekun WANG
Fuping GAN
Bokun YAN
Xianqing LI
Hemou LI
Cite this article:   
Zekun WANG,Fuping GAN,Bokun YAN, et al. Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress[J]. Remote Sensing for Natural Resources, 2022, 34(3): 1-9.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021322     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/1
观测方式 观测参数 仪器及手段
野外现场
实地测量
(人工)
积雪深度(分层) 直尺
雪水当量 雪秤
雪层温度(分层)、雪表面温度、雪土界面温度 针式温度计、手持式红外温度计
雪颗粒形态 形状卡片
雪粒径(分层) 数码显微镜
积雪含水量(分层)、积雪介电常数(分层) 雪特性分析仪(Snow Fork)
积雪密度(分层) 雪铲、雪特性分析仪(Snow Fork)
积雪硬度 指针式推拉力计
地面台站
长期观测
(自动化、
人工)
积雪深度 SR50A超声波
雪水当量 GMON3
雪反照率 四分量表
雪层温度、雪表面温度、雪土界面温度 红外温度计
积雪含水量、介电常数、积雪密度 积雪分析系统(SPA)
雪压 雪压计
风速、风向、大气压、空气温度、相对湿度 风温湿压传感器
卫星遥感
区域观测
积雪面积 光学遥感反演
雪反照率
雪层温度
积雪深度 微波遥感反演
雪水当量
积雪含水量
Tab.1  Main parameters and related instruments of snow observation[6,23-24]
传感器 卫星平台 运行时间 频率/GHz
和极化方
式(H/V)
瞬时视
场/km
幅宽/
km
SMMR Nimbus-7 1978年10月—1987年8月 6.6 H,V
10.7 H,V
18 H,V
21 H,V
37 H,V
148×95
91×59
55×41
46×30
27×18
780
SSM/I DMSP 1987年6月—2009年11月 19.3 H,V
22.2 V
37 H,V
85.5 H,V
70×45
60×40
38×30
16×14
1 394
SSMIS DMSP 2006年11月至今 19.3 H,V
22.2 V
37 H,V
91.7 H,V
70×45
60×40
38×30
16×13
1 700
AMSR-E Aqua 2002年6月—2011年10月 6.9 H,V
10.7 H,V
18.7 H,V
23.8 H,V
36.5 H,V
89 H,V
75×43
51×29
27×16
31×18
14×8
6×4
1 445
AMSR-2 GCOM-
W1
2012年8月至今 6.9 H,V
7.3 H,V
10.65 H,V
18.7 H,V
23.8 H,V
36.5 H,V
89 H,V
62×35
62×35
42×24
22×14
19×11
12×7
5×3
1 450
MWRI FY-3A/
B/C/D
2010年11月至今 10.65 H,V
18.7 H,V
23.8 H,V
36.5 H,V
89 H,V
85×51
50×30
45×27
30×18
5×9
1 400
Tab.2  Related passive microwave sensor characteristic parameters[29]
[1] Choi G, Robinson D, Kang S. Changing northern hemisphere snow seasons[J]. Journal of Climate, 2010, 23(19):5305-5310.
doi: 10.1175/2010JCLI3644.1 url: http://journals.ametsoc.org/doi/10.1175/2010JCLI3644.1
[2] 车涛, 李新. 1993—2002年中国积雪水资源时空分布与变化特征[J]. 冰川冻土, 2005, 27(1):64-67.
[2] Che T, Li X. Spatial distribution and temporal variation of snow water resources in China during 1993—2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1):64-67.
[3] 胡汝骥. 中国积雪与雪灾防治[M]. 北京: 中国环境出版社, 2013.
[3] Hu R J. Snow and snow disaster in China[M]. Beijing: Chinese Environment Science Press, 2013.
[4] Shi J C, Xiong C, Jiang L M. Review of snow water equivalent microwave remote sensing[J]. Science China, 2016, 59(4):731-745.
[5] 梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6):618-671.
[5] Liang S L, Bai R, Chen X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6):618-671.
[6] 蒋玲梅. 被动微波雪水当量研究[D]. 北京: 北京师范大学, 2005.
[6] Jiang L M. Passive microwave remote sensing of snow water equivalence study[D]. Beijing: Beijing Normal University, 2005.
[7] 车涛, 李新, 高峰. 青藏高原积雪深度和雪水当量的被动微波遥感反演[J]. 冰川冻土, 2004, 26(3):363-368.
[7] Che T, Li X, Gao F. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368.
[8] Josberger E G, Mognard N M. A passive microwave snow depth algorithm with a proxy for snow metamorphism[J]. Hydrological Processes, 2002, 16(8):1557-1568.
doi: 10.1002/hyp.1020 url: https://onlinelibrary.wiley.com/doi/10.1002/hyp.1020
[9] 李金亚, 杨秀春, 徐斌, 等. 基于MODIS与AMSR-E数据的中国6大牧区草原积雪遥感监测研究[J]. 地理科学, 2011, 31(9):1097-1104.
[9] Li J Y, Yang X C, Xu B, et al. Snow monitoring using MODIS and AMSR-E in six main pastoral areas of China[J]. Scientia Geographica Sinica, 2011, 31(9):1097-1104.
[10] 车涛, 李新. 被动微波遥感估算雪水当量研究进展与展望[J]. 地球科学进展, 2004, 19(2):204-210.
doi: 10.11867/j.issn.1001-8166.2004.02.0204
[10] Che T, Li X. The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2):204-210.
[11] 李新, 车涛. 积雪被动微波遥感研究进展[J]. 冰川冻土, 2007, 29(3):487-496.
[11] Li X, Che T. A review on passive microwave remote sensing of snow cover[J]. Journal of Glaciology and Geocryology, 2007, 29(3):487-496.
[12] Pulliainen J T, Grandell J, Hallikainen M T. HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1378-1390.
doi: 10.1109/36.763302 url: http://ieeexplore.ieee.org/document/763302/
[13] Wiesmann A, Matzler C. Microwave emission model of layered snow packs[J]. Remote Sensing of Environment, 1999, 70(3):307-316.
doi: 10.1016/S0034-4257(99)00046-2 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425799000462
[14] Tsang L, Chen C T, Chang A T, et al. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J]. Radio Science, 2000, 35(3):731-749.
doi: 10.1029/1999RS002270 url: http://doi.wiley.com/10.1029/1999RS002270
[15] Du J, Shi J, Rott H. Comparison between a multi-scattering and multi-layer snow scattering model and its parameterized snow backscattering model[J]. Remote Sensing of Environment, 2010, 114(5):1089-1098.
doi: 10.1016/j.rse.2009.12.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709003769
[16] Ding K H, Xu X, Tsang L. Electromagnetic scattering by Bicontinuous random microstructures with discrete permittivities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3139-3151.
doi: 10.1109/TGRS.2010.2043953 url: http://ieeexplore.ieee.org/document/5444898/
[17] Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J]. Annals of Glaciology, 1987, 9:39-44.
doi: 10.1017/S0260305500200736 url: https://www.cambridge.org/core/product/identifier/S0260305500200736/type/journal_article
[18] Foster J L, Chang A T C, Hall D K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm,a revised algorithm and a snow depth climatology[J]. Remote Sensing of Environment, 1997, 62(2):132-142.
doi: 10.1016/S0034-4257(97)00085-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425797000850
[19] 车涛. 积雪被动微波遥感反演与积雪数据同化方法研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2006.
[19] Che T. Study on passive microwave remote sensing of snow and snow data assimilation method[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS, 2006.
[20] Che T, Xin L, Jin R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1):145-154.
doi: 10.3189/172756408787814690 url: https://www.cambridge.org/core/product/identifier/S0260305500252889/type/journal_article
[21] Jiang L M, Wang P, Zhang L X, et al. Improvement of snow depth retrieval for FY3B-MWRI in China[J]. Science China Earth Science, 2014, 57(6):1278-1292.
doi: 10.1007/s11430-013-4798-8 url: http://link.springer.com/10.1007/s11430-013-4798-8
[22] Kelly R. The AMSR-E snow depth algorithm:Description and initial results[J]. Journal of the Remote Sensing Society of Japan, 2009, 29(1):307-317.
[23] 王建, 钟歆玥, 戴礼云, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1):12-26.
doi: 10.11867/j.issn.1001-8166.2018.01.0012
[23] Wang J, Zhong X Y, Dai L Y, et al. Investigation on the characteristics and distribution of snow cover in China[J]. Advances in Earth Science, 2018, 33(1):12-26.
[24] 王子龙, 胡石涛, 付强, 等. 积雪参数遥感反演研究进展[J]. 东北农业大学学报, 2016, 47(9):100-106.
[24] Wang Z L, Hu S T, Fu Q, et al. Research progress in remote sensing inversion of snow cover parameters[J]. Journal of Northeast Agricultural University, 2016, 47(9):100-106.
[25] 马丽娟, 秦大河. 1957—2009年中国台站观测的关键积雪参数时空变化特征[J]. 冰川冻土, 2012, 34(1):1-11.
[25] Ma L J, Qin D H. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957—2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1):1-11.
[26] 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003:151-153.
[26] China Meteorological Administration. Ground meteorological observation specifications[M]. Beijing: China Meteorological Press, 2003:151-153.
[27] 邱玉宝, 卢洁羽, 石利娟, 等. 高亚洲地区被动微波遥感雪水当量数据集[J]. 中国科学数据(中英文网络版), 2019, 4(1):110-125.
[27] Qiu Y B, Lu J Y, Shi L J, et al. Passive microwave remote sensing snow water equivalent data set in high Asia area[J]. Scientific Data in China(Chinese-English Online Edition), 2019, 4(1):110-125.
[28] Dozier J, Painter T. Multispectral and hyperspectral remote sensing of alpine snow properties[J]. Annual Review of Earth and Planetary Sciences, 2004, 21(1):465-494.
[29] 梁顺林, 李小文, 王锦地. 定量遥感:理念与算法(第二版)[M]. 北京: 科学出版社, 2019:718-719.
[29] Liang S L, Li X W, Wang J D. Quantitative remote sensing:Ideas and algorithms (second edition)[M]. Beijing: Science Press, 2019: 718-719.
[30] Tedesco M, Pulliainen J, Takala, et al. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data[J]. Remote Sensing of Environment, 2004, 90(1):76-85.
doi: 10.1016/j.rse.2003.12.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703003742
[31] Kunkee D B, Swadley S D, Poe G A, et al. Special sensor microwave imager sounder (SSMIS) radiometric calibration anomalies—part I:Identification and characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4):1017-1033.
doi: 10.1109/TGRS.2008.917213 url: http://ieeexplore.ieee.org/document/4475707/
[32] Gan Y, Zhang Y, Kongoli C, et al. Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States[J]. Remote Sensing of Environment, 2021, 254:112280.
doi: 10.1016/j.rse.2020.112280 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425720306532
[33] 孙知文, 施建成, 杨虎, 等. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2):264-267.
[33] Sun Z W, Shi J C, Yang H, et al. A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J]. Remote Sensing Technology and Application, 2007, 22(2):264-267.
[34] Armstrong R L, Brodzik M J. Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms[J]. Annals of Glaciology, 2002, 34(1):38-44.
doi: 10.3189/172756402781817428 url: https://www.cambridge.org/core/product/identifier/S0260305500256553/type/journal_article
[35] Foster J L, Sun C, Walker J P, et al. Quantifying the uncertainty in passive microwave snow water equivalent observations[J]. Remote Sensing of Environment, 2005, 94(2):187-203.
doi: 10.1016/j.rse.2004.09.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425704002950
[36] Tedesco M, Jeyaratnam J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures[J]. Remote Sensing, 2016, 8(12):1-25.
doi: 10.3390/rs8010001 url: http://www.mdpi.com/2072-4292/8/1/1
[37] Yang J W, Jiang L M, Wu S L, et al. Development of a snow depth estimation algorithm over China for the FY-3D/MWRI[J]. Remote Sensing, 2019, 11(8):1-21.
doi: 10.3390/rs11010001 url: http://www.mdpi.com/2072-4292/11/1/1
[38] 孙知文, 于鹏珊, 夏浪, 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
doi: 10.6046/gtzyyg.2015.01.02
[38] Sun Z W, Yu P S, Xia L, et al. Progress in study of snow parameter inversion by passive remote sensing[J]. Remote Sensing for Land and Resources, 2015, 27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
doi: 10.6046/gtzyyg.2015.01.02
[39] Stiles W H, Ulaby F T, Rango A. Microwave measurements of snowpack properties[J]. Nordic Hydrology, 1981, 12(3):143-166.
doi: 10.2166/nh.1981.0012 url: https://iwaponline.com/hr/article/12/3/143/84/Microwave-Measurements-of-Snowpack-Properties
[40] Che T, Dai L, Zheng X, et al. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China[J]. Remote Sensing of Environment, 2016, 183:334-349.
doi: 10.1016/j.rse.2016.06.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716302437
[41] Sturm M, Brian T, Glen L, et al. Estimating snow water equivalent using snow depth data and climate classes[J]. Journal of Hydrometeorology, 2010, 11(6):1380-1394.
doi: 10.1175/2010JHM1202.1 url: http://journals.ametsoc.org/doi/10.1175/2010JHM1202.1
[42] Jiang L M, Shi J C, Tjuatja S. Estimation of snow water equivalence using the polarimetric scanning radiometer from the Cold Land Processes Experiments(CLPX03)[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):359-363.
doi: 10.1109/LGRS.2010.2076345 url: http://ieeexplore.ieee.org/document/5604644/
[43] Pan J, Durand M T, Jagt B J V, et al. Application of a Markov chain Monte Carlo algorithm for snow water equivalent retrieval from passive microwave measurements[J]. Remote Sensing of Environment, 2017, 192:150-165.
doi: 10.1016/j.rse.2017.02.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717300573
[44] Royer A, Roy A, Montpetit B, et al. Comparison of commonly-used microwave radiative transfer models for snow remote sensing[J]. Remote Sensing of Environment, 2017, 190:247-259.
doi: 10.1016/j.rse.2016.12.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716304990
[45] 蒋玲梅, 崔慧珍, 王功雪, 等. 积雪、土壤冻融与土壤水分遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(6):1237-1262.
[45] Jiang L M, Cui H Z, Wang G X, et al. Progress on remote sensing of snow,surface soil frozen/thaw state and soil moisture[J]. Remote Sensing Technology and Application, 2020, 35(6):1237-1262.
[46] Forman B A, Reichle R H, Derksen C. Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):235-248.
doi: 10.1109/TGRS.2013.2237913 url: http://ieeexplore.ieee.org/document/6471203/
[47] Forman B A, Reichle R H. Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9):4431-4441.
doi: 10.1109/JSTARS.2014.2325780 url: https://ieeexplore.ieee.org/document/6827176/
[48] Xiao X, Zhang T, Zhong X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210(7):48-64.
doi: 10.1016/j.rse.2018.03.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718301019
[49] Yang J, Jiang L, Luojus K, et al. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach[J]. The Cryosphere, 2020, 14(6):1763-1778.
doi: 10.5194/tc-14-1763-2020 url: https://tc.copernicus.org/articles/14/1763/2020/
[50] Bair E H, Andre A C, Karl R. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan[J]. The Cryosphere, 2018, 12(5):1579-1594.
doi: 10.5194/tc-12-1579-2018 url: https://tc.copernicus.org/articles/12/1579/2018/
[51] Durand M T, Liu D S. The need for prior information in characterizing snow water equivalent from microwave brightness temperatures[J]. Remote Sensing of Environment, 2012, 126(4):248-257.
doi: 10.1016/j.rse.2011.10.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711003725
[52] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6):590-605.
doi: 10.11867/j.issn.1001-8166.2018.06.0590
[52] Xiao X X, Zhang T J. Passive microwave remote sensing of snow depth and snow water equivalent:Overview[J]. Advances in Earth Science, 2018, 33(6):590-605.
[53] 郭建平, 刘欢, 安林昌, 等. 2001—2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 2016, 35(1):24-33.
doi: 10.7522/j.issn.1000-0534.2014.00140
[53] Guo J P, Liu H, An L C, et al. Changes in the snow cover rate of the Tibetan Plateau from 2001 to 2012 and the influence of terrain[J]. Plateau Meteorology, 2016, 35(1):24-33.
[54] 郝大磊, 肖青, 闻建光, 等. 定量遥感升尺度转换方法研究进展[J]. 遥感学报, 2018, 22(3):408-423.
[54] Hao D L, Xiao Q, Wen J G, et al. Advances in up-scaling methods of quantitative remote sensing[J]. Journal of Remote Sensing, 2018, 22(3):408-423.
[55] 李长春, 包安明, 岳继博, 等. 基于地形校正的山区积雪深度反演算法[J]. 干旱区研究, 2016, 33(5):927-933.
[55] Li C C, Bao A M, Yue J B, et al. Mountain snow depth inversion algorithm based on terrain correction[J]. Arid Zone Research, 2016, 33(5):927-933.
[56] 李晓静, 刘玉洁, 朱小祥, 等. 利用SSM/I数据判识我国及周边地区雪盖[J]. 应用气象学报, 2007, 18(1):12-20.
[56] Li X J, Liu Y J, Zhu X X, et al. Using SSM/I data to identify snow cover in my country and surrounding areas[J]. Journal of Applied Meteorology, 2007, 18(1):12-20.
[57] 黄晓东, 李旭冰, 刘畅宇, 等. 青藏高原积雪范围和雪深/雪水当量遥感反演研究进展及挑战[J]. 冰川冻土, 2019, 41(5):1138-1149.
doi: 10.7522/j.issn.1000-0240.2019.0529
[57] Huang X D, Li X B, Liu C Y, et al, Remote sensing inversion of snow cover extent and snow depth/snow water equivalent on the Qinghai-Tibet Plateau:Advance and challenge[J]. Glaciology and Geocryology, 2019, 41(5):1138-1149.
[58] Liang T G, Zhang X T, Xie H J, et al. Towards improved daily snow cover map with advanced combination of MODIS and AMSR-E measurements[J]. Remote Sensing of Environment, 2008, 112(10):3750-3761.
doi: 10.1016/j.rse.2008.05.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425708001740
[59] Gao Y, Xie H J, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrolo-gy, 2010, 385(1):23-35.
[60] Huang X D, Deng J, Ma X F, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016, 10(5):2453-2463.
doi: 10.5194/tc-10-2453-2016 url: https://tc.copernicus.org/articles/10/2453/2016/
[61] Wang Y L, Huang X D, Wang J S, et al. AMSR2 snow depth down scaling algorithm based on a multifactor approach over the Tibetan Plateau,China[J]. Remote Sensing of Environment, 2019, 231:111268.
doi: 10.1016/j.rse.2019.111268 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719302871
[62] 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11):1247-1253.
[62] Che T, Hao X H, Dai L Y, et al. Snowcover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1247-1253.
[63] Huang X D, Liu C Y, Wang Y L, et al. Snow cover variations across China from 1951—2018[J]. The Cryosphere Discussions, 2020. doi: 10.5194/tc-2020-202.
doi: 10.5194/tc-2020-202
[64] Senan R, Orsolini Y J, Weisheimer A, et al. Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts[J]. Climate Dynamics, 2016, 47(9):2709-2725.
doi: 10.1007/s00382-016-2993-y url: http://link.springer.com/10.1007/s00382-016-2993-y
[65] 王顺久. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 2017, 36(5):1153-1164.
doi: 10.7522/j.issn.1000-0534.2016.00117
[65] Wang S J. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5):1153-1164.
[66] Fang Y H, Zhang X, Niu G Y, et al. Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the upper Changjiang River basin[J]. Water, 2017, 9(3):165.
doi: 10.3390/w9030165 url: http://www.mdpi.com/2073-4441/9/3/165
[1] MA Shanmu, GAN Fuping, WU Huaichun, YAN Bokun. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2022, 34(3): 164-172.
[2] WU Ying, QIAN Bo, WANG Zhenhui. Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 176-181.
[3] BAI Shuying, WU Qi, SHI Jianqiao, GU Haimin. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 171-178.
[4] XING Yu. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 99-107.
[5] SUN Zhiwen, YU Pengshan, XIA Lang, WU Shengli, JIANG Lingmei, GUO Lei. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 9-15.
[6] ZHOU Fangcheng, SONG Xiaoning, LI Zhaoliang. Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 1-7.
[7] MA Hongzhang, LIU Sumei, ZHU Xiaobo, SUN Genyun, SUN Lin, LIU Qinhuo. Crop LAI inversion based on the passive microwave remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 66-71.
[8] WU Ying, WANG Zhen-hui. Advances in the Study of Land Surface Emissivity Retrieval from Passive Microwave Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 1-7.
[9] ZHAO Fu-yue, ZHANG Rui-jiang, CHEN Hua, SUN Yan-gui. Study of Qinghai-Tibet Plateau Uplift Response to Eco-geological Environment Based on Remote Sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 116-121.
[10] YANG Li-Juan, WU Sheng-Li, ZHANG Zhong-Jun.
A Model Analysis Using a Combined Active/Passive Microwave Remote Sensing Approach for Soil Moisture Retrieval
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 53-58.
[11] LI Qin, ZHONG Ruo-Fei. Multiple Surface Parameters Retrieval of Simulated AMSR-E Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 42-47.
[12] YAN Yun-Peng, HE Zheng-Min. The Design and Implementation of Remote Sensing Monitoring Database System for Eco-geological Environment of Qinghai-Tibet Plateau Based on Arc Engine Techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 35-38.
[13] ZHAO Fu-Yue. A Tentative Discussion on the Continental Glacial Sheet in East Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 39-44.
[14] ZHANG Rui-Jiang, FANG Hong-Bin, ZHAO Fu-Yue, ZENG Fu-Nian. Remote Sensing Survey of Existing Glaciers in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 45-48.
[15] ZHANG Rui-Jiang, FANG Hong-Bin, ZHAO Fu-Yue. The Evolution of Existing Glaciers in the Past 30 Years in Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech