Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 39-44     DOI: 10.6046/gtzyyg.2010.s1.10
Technology Application |
A Tentative Discussion on the Continental Glacial Sheet in East Qinghai-Tibet Plateau
 ZHAO Fu-Yue
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(1115 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Qinghai-Tibet Plateau is a region with the largest area of glaciers in China and is called the water tower of

Asia. The key characteristics of glaciers evolution in Qinghai-Tibet Plateau are their incessant area shrinkage, continuous

thinning of their thickness and ceaseless reduction of their ice reserves. According to the results of remote sensing

survey in Qinghai-Tibet Plateau, this paper deals with the features of the continental glacial sheet in east Qinghai-Tibet

Plateau based on remote sensing images, such as its geological features, distribution areas, formation stages and formation

environments. The effects of the geological setting on the formation of the continental glacial sheet in east Qinghai-Tibet

Plateau are also tentatively discussed.

Keywords Information extraction      Principal component      Image processing     
:  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Gang
Cite this article:   
LIU Gang. A Tentative Discussion on the Continental Glacial Sheet in East Qinghai-Tibet Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 39-44.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.10     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/39

[1]施雅风,等.青藏高原末次盛冰期最盛时的冰川与环境[J].冰川冻土,1997,19(2):97-113.


[2]施雅风.对青藏高原末次冰盛期降温值、平衡线下降值与模拟结果的讨论[J].第四纪研究,1999(5):312-322.


[3]韩同林.青藏高原第四纪大陆冰盖形成的野外证据[J].地质论评,1989,35(5):468-478.


[4]施亚风.中国第四纪冰期划分改进建议[J].冰川冻土,2002,24(6):687-690.


[5]韩同林.青藏大冰盖[M].北京:地质出版社,1911.


[6]姜大膀,等.末次冰盛期气候模拟及青藏高原冰盖的可能影响[J].第四纪研究,2002,  22(4):323-331.


[7]施雅风,等.80年代以来中国冰川学和第四纪冰川研究的新进展[J].冰川冻土,1994,16(1):1-14.


[8]中国地质调查局.阿尔金—昆仑山地区区域地质调查成果进展[J].地质通报,2004,23(1):68-96.

[1] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[2] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[3] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[4] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[5] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[6] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[7] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[8] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[9] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[10] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[11] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[12] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[13] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[14] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[15] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech