Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (s1) : 64-68     DOI: 10.6046/gtzyyg.2010.s1.15
Technology Application |
Eastward Migration of the Watershed of Inflow and Outflow Rives in the Mid-southern Qinghai-Tibet Plateau and the “Nagqu Movement”
 SUN Yan-Gui, ZHANG Kun, YU Jing-Hui, MA Shi-Bin
Institute of Geological Survey of Qinghai Province, Xining 810012, China
Download: PDF(1123 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Making use of the remote sensing technique and field survey, the authors have studied the Quaternary geology of

the Qinghai-Tibet Plateau since 2003, and the results indicate that the watershed of China’s inflow rivers and outflow

rivers in the mid-southern Qinghai-Tibet Plateau was formed in early Holocene. The Nagqu Movement that occurred at the last

stage of late Pleistocene was an important crust movement forming the dividing range. The remote sensing survey also

discovered that the dividing range was situated in the Tangra Yumco area. The crust movement resulted in eastward migration

of the watershed for 500 km, and the early riverhead area of the Nujiang River consisting of the Siling Co and Namo Co

lakes became inland basins. Based on the results of the remote sensing survey of the Quaternary geology which mainly

include the fossil river courses, the angular unconformity between Pleistocene and Holocene and the Nagqu movement in the

mid-southern Qinghai-Tibet Plateau, this paper deals systematically with these phenomena and regularities.

Keywords Information of remote sensing      The enlargement of lake      Dynamic monitoring      Active structure      Tibet     
:     
  TP 79  
Issue Date: 13 November 2010
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Ri-hong
YU Xue-zheng
LI Yu-long
Cite this article:   
YANG Ri-hong,YU Xue-zheng,LI Yu-long. Eastward Migration of the Watershed of Inflow and Outflow Rives in the Mid-southern Qinghai-Tibet Plateau and the “Nagqu Movement”[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 64-68.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.s1.15     OR     https://www.gtzyyg.com/EN/Y2010/V22/Is1/64

[1]李吉均,方小敏.青藏高原隆升与环境变化研究[J].科学通报, 1998,43(15):1569-1574.


[2]施雅风,李吉均,李炳元.青藏高原晚新生代隆升与环境变化[M].广州:广东科技出版社,1998:382-392.


[3]李吉均,方小敏,马海洲,等.晚新生代黄河上游演化与青藏高原隆升[J].中国科学(D辑), 1996,26(4):316-322.


[4]刘百篪,刘小凤,袁道阳,等.黄河中上游阶地对青藏高原东北部第四纪构造活动的反映[J].地震地质,2003,25(1):133-144.


[5]张智勇,于庆文,张克信,等.黄河上游第四纪河流地貌演化[J].地球科学——中国地质大学学报,2003,28(6):621-626.


[6]聂军胜,宋春辉,方小敏,等.贵德盆地黄河出现的古地磁年代及其意义[J].海洋地质与第四纪地质,2003,23(2):59-64.


[7]赵振明,刘百篪.青海共和至甘肃兰州黄河河谷地貌的形成与青藏高原东北缘隆升的关系[J]. 西北地质,2003,36(2):1-12.


[8]鹿化煜,安芷生,王晓勇,等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑),2004,34(9):855-864.


[9]赵振明,刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质,2005,38(2):24-32.


[10]孙延贵,方洪宾,张琨, 等. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J]. 中国地质,2007,34(6):1141-1147.


[11]张会平,张培震,吴庆龙, 等. 循化—贵德地区黄河水系河流纵剖面形态特征及其构造意义[J]. 第四纪研究,2008,28(2):299-


309.


[12]崔之久,伍永秋,刘耕年. 关于“昆仑-黄河运动” [J]. 中国科学(D辑),1998,28(1):53-59.


[13]宋春晖,方小敏,李吉均.青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升[J]. 中国科学(D辑),2001,31(增刊):155-162.


[14]王国灿,杨魏然,马华东,等. 东、西昆仑山晚新生代以来构造隆升对比[J].地学前缘,2005,12(3):157-166.


[15]吴珍汉,江万,吴中海,等. 青藏高原腹地典型盆-山构造形成时代[J].地球学报,2002,23(4):289-294.


[16]李亚林,王成善,王谋,等.藏北长江源地区河流地貌特征及其对新构造运动的响应[J].中国地质,2006,33(2):374-382.


[17]吴中海,张永双,胡道功,等. 藏南错那—沃卡裂谷的第四纪正断层作用及其特征[J].地震地质,2008,30(1):144-160.


[18]郑绵平,刘喜方,袁鹤然,等.青藏高原第四纪重点湖泊地层序列和湖相沉积若干特点[J].地质学报,2008,29(3):293-305.


[19]刘琦胜,赵希涛,叶培盛,等. 长江上源布曲盆地晚更新世湖相沉积的发现及其古植被与古气候[J].地质学报,2004,25(4):528-533.


[20]朱大岗,孟宪刚,邵兆刚,等.西藏阿里扎达盆地上新世—早更新世河湖相地层层序地层分析[J].地学前缘,2006,13(5):308-315.


[21]李炳员.青藏高原大湖期[J].地理学报,2000,55(2):174-182.


[22]孙延贵,方洪宾,王冬青,等.青藏高原上地壳物质运动状态遥感分析[C]∥庄逢甘,陈述彭.遥感科技论坛.北京:中国宇航出版


社,2005:59-64.


[23]方洪宾,赵福岳,路云阁,等.青藏高原生态地质环境调查研究[J].国土资源遥感,2007(4):61-65.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[3] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[4] MIN Wenbin, PEN Jun, Li Shiying. The evaluation of FY-3C snow products in the Tibetan Plateau[J]. Remote Sensing for Land & Resources, 2021, 33(1): 145-151.
[5] Liqiang TONG, Lixin PEI, Jienan TU, Zhaocheng GUO, Jiangkuan YU, Jinghui FAN, Dandan LI. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
[6] Haiqing WANG, Jianting HAO, Li LI, Na AN, Wenjia XU, Yaqiu YIN. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
[7] Junnan XIONG, Wei LI, Zhiqi LIU, Weiming CHENG, Chunkun FAN, Jin LI. Research on downscaling of TRMM data in the Tibetan Plateau based on GWR model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 88-95.
[8] Haiqing WANG, Li LI, Ling CHEN, Wenjia XU, Jinzhong YANG, Qiong LIU. An analysis of mining intensity about metal mines based on investigation of tailing reservoirs in Tibet[J]. Remote Sensing for Land & Resources, 2019, 31(2): 218-223.
[9] Binren XU, Yuanyuan WEI. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(3): 181-188.
[10] Jie XIANG, Jianping CHEN, Shi LI, Zili LAI, Haozhong HUANG, Jing LIU, Shuai XIE. Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine, Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 224-229.
[11] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[12] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[13] SHI Qingyun, ZHAO Zhifang, SONG Kun, YAN Jieru. Dynamic monitoring of water erosion desertification in Dianchi watershed based on RS and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 101-105.
[14] FAN Min, SUN Xiaofei, SU Fenghuan, JIANG Huabiao, HAN Lei. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 85-89.
[15] WANG Xiaohong, JING Qingqing, ZHOU Yingjie, YAO Weiling. Remote sensing dynamic monitoring of coal mine subsidence disaster in Shandong Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 203-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech