Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 40-47     DOI: 10.6046/zrzyyg.2024159
|
A method for plastic greenhouse extraction integrating Sentinel-2 spectral indices and an improved one-class random forest
XIAO Mingzhu(), LI PeiJjun()
Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China
Download: PDF(5484 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Plastic greenhouses have gained extensive application in modern agriculture. This, however, gives rise to ecological issues. Remote sensing data enable effective extraction and identification of plastic greenhouses on a large scale. Existing studies largely focus on plastic greenhouse extraction using either classification or spectral indices methods. However, there exists a lack of the combination and comparative analysis of both methods. This study proposed a method for plastic greenhouse extraction that integrates multiple Sentinel-2 spectral indices and a one-class classification method (improved one-class random forest). Furthermore, this study extracted information on plastic greenhouses using an improved one-class random forest method, as well as six spectral indices of plastic greenhouses as classification features. The extraction results were then compared with those of the proposed method to demonstrate the effectiveness of the latter. The results indicate that the proposed method yielded an overall accuracy of above 97% across four seasons, with kappa coefficients exceeding 0.82 and F1 scores of over 0.84. These metrics all were better than those yielded using the six spectral indices. Furthermore, the proposed method exhibited differences in the overall accuracy, kappa coefficient, and F1 score across four seasons of less than 1%, under 0.1, and below 0.1 respectively. This suggests the high seasonal stability of the method, outperforming the extraction results obtained by using spectral indices alone. This study provides a method for accurately monitoring the spatial distribution of plastic greenhouses.

Keywords plastic greenhouse      spectral index      one-class random forest     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingzhu XIAO
PeiJjun LI
Cite this article:   
Mingzhu XIAO,PeiJjun LI. A method for plastic greenhouse extraction integrating Sentinel-2 spectral indices and an improved one-class random forest[J]. Remote Sensing for Natural Resources, 2025, 37(4): 40-47.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024159     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/40
Fig.1  Geographic location and the Sentinel-2 true-color image of the study area
波段 描述 S-2A 中心
波长/nm
空间分辨率/m
Band 1 海岸气溶胶 442.7 60
Band 2 蓝光 492.4 10
Band 3 绿光 559.8 10
Band 4 红光 664.6 10
Band 5 红边1 704.1 20
Band 6 红边2 740.5 20
Band 7 红边3 782.8 20
Band 8 近红外 832.8 10
Band 8A 窄近红外 864.7 20
Band 9 水蒸气 945.1 60
Band 10 卷云 1 373.5 60
Band 11 短波红外1 1 613.7 20
Band 12 短波红外2 2 202.4 20
Tab.1  Sentinel-2 band settings and resolution
图像 塑料大棚样本
数/个
非塑料大棚样本
数/个
春季图像 36 063 236 010
夏季图像 35 401 233 065
秋季图像 36 106 231 574
冬季图像 36 027 232 506
Tab.2  The numbers of plastic greenhouse and non-plastic greenhouse samples in images of different seasons
Fig.2  Flowchart of the proposed method
指数名 公式 变量含义
VI V I = R s w i r 1 - R n i r R s w i r 1 + R n i r × R n i r - R r e d R n i r + R r e d R c o a s t a l, R b l u e, R g r e e n, R r e d, R n i r, R s w i r 1, R s w i r 2分别为海岸气溶胶、蓝光、绿光、红光、近红外、短波红外1、短波红外2波段的光谱反射率; λ L P λ R P分别为上述一组波段中最短和最长的波长; R i为波长i对应波段的反射率
PMLI P M L I = R s w i r 1 - R r e d R s w i r 1 + R r e d
MDI M D I = i = λ R P λ L P R i 2 + ( λ R P - i ) 2   - i = λ L P λ R P R i 2 + ( i - λ L P ) 2  
GDI G D I = M D I 3 - R b l u e - ( R s w i r 1 + R s w i r 2 2 ) R b l u e + ( R s w i r 1 + R s w i r 2 2 )
PGI P G I = 0 , N D V I > 0.73 100 × R b l u e × ( R n i r - R r e d ) 1 - R b l u e + R g r e e n + R n i r 3 0 , N D B I > 0.005 ,
APGI A P G I = 100 × R c o a s t a l × R r e d × 2 × R n i r - R r e d - R s w i r 2 2 × R n i r + R r e d + R s w i r 2
Tab.3  The plastic greenhouse indices and the equations used in this study
Fig.3  Spectral curves of plastic greenhouses in different seasons
Fig.4  Spectral index images from Sentinel-2 image of spring season in the study area
方法 OA/% Kappa系数 F1分数 塑料大棚 非塑料大棚
UA/% PA/% UA/% PA/%
VI 24.41 -0.069 3 0.101 5 5.68 47.80 81.19 22.12
PMLI 70.19 0.108 7 0.231 3 15.03 50.16 93.65 72.16
MDI 86.54 0.418 3 0.486 8 36.94 71.38 96.91 88.04
GDI 81.42 0.316 7 0.403 8 28.31 70.38 96.60 82.51
PGI 93.57 0.555 0 0.589 2 68.81 51.52 95.36 97.70
APGI 95.22 0.720 6 0.746 9 70.96 78.83 97.90 96.83
本文方法 97.92 0.866 8 0.878 1 92.25 83.78 98.42 99.31
Tab.4  Accuracies of plastic greenhouse extraction from Sentinel-2 image of spring season using different spectral indices and the proposed method
方法 OA/% Kappa系数 F1分数
夏季 秋季 冬季 夏季 秋季 冬季 夏季 秋季 冬季
VI 54.16 45.47 11.57 0.013 3 -0.021 6 -0.197 5 0.155 6 0.147 0 0.089 7
PMLI 70.28 76.91 78.93 0.190 9 0.274 6 0.345 8 0.301 6 0.378 9 0.463 8
MDI 91.23 89.96 91.05 0.453 1 0.559 9 0.686 4 0.501 1 0.613 4 0.738 2
GDI 85.00 83.28 85.31 0.338 6 0.303 2 0.520 8 0.414 0 0.390 7 0.604 5
PGI 95.42 93.35 94.83 0.680 5 0.582 1 0.785 7 0.705 0 0.618 0 0.815 8
APGI 94.76 94.41 95.86 0.680 1 0.683 5 0.831 6 0.709 1 0.714 4 0.855 8
本文方法 97.22 97.64 97.56 0.829 9 0.858 8 0.898 8 0.845 1 0.871 7 0.912 9
Tab.5  Accuracies of plastic greenhouse extraction from Sentinel-2 image of summer, autumn and winter seasons using different indices and the proposed method
Fig.5  Sentinel-2 true-color image of a selected local area acquired in spring and results of plastic greenhouse mapping
Fig.6  Plastic greenhouses extracted from different season images using the proposed method in the study area
[1] Picuno P. Innovative material and improved technical design for a sustainable exploitation of agricultural plastic film[J]. Polymer-Plastics Technology and Engineering, 2014, 53(10):1000-1011.
[2] Li J. Economic analysis of agro-film pollution in Xinjiang region[J]. Bord.Econ.Culture, 2008, 1(1):16-17.
[3] 郑磊, 何直蒙, 丁海勇. 基于ENVINet5的高分辨率遥感影像稀疏塑料大棚提取研究[J]. 遥感技术与应用, 2021, 36(4):908-915.
[3] Zheng L, He Z M, Ding H Y. Research on the sparse plastic shed extraction from high resolution images using ENVINet 5 deep lear-ning method[J]. Remote Sensing Technology and Application, 2021, 36(4):908-915.
[4] Aguilar M A, Bianconi F, Aguilar F J, et al. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo ima-gery[J]. Remote Sensing, 2014, 6(5):3554-3582.
[5] Aguilar M A, Jiménez-Lao R, Aguilar F J. Evaluation of object-based greenhouse mapping using WorldView-3 VNIR and SWIR data:A case study from Almería (Spain)[J]. Remote Sensing, 2021, 13(11):2133.
[6] Wu C F, Deng J S, Wang K, et al. Object-based classification approach for greenhouse mapping using Landsat8 imagery[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1):79-88.
[7] Zhang P, Du P J, Guo S C, et al. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images[J]. Remote Sensing of Environment, 2022, 276:113042.
[8] Lin J H, Jin X B, Ren J, et al. Rapid mapping of large-scale greenhouse based on integrated learning algorithm and Google Earth engine[J]. Remote Sensing, 2021, 13(7):1245.
[9] Nemmaoui A, Aguilar M A, Aguilar F J, et al. Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach:A case study from Almería (Spain)[J]. Remote Sensing, 2018, 10(11):1751.
[10] Novelli A, Aguilar M A, Nemmaoui A, et al. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat8 OLI data:A case study from Almería (Spain)[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52(1):403-411.
[11] Baghirli O, Ibrahimli I, Mammadzada T. Greenhouse segmentation on high-resolution optical satellite imagery using deep learning techniques[J]. ArXiv, 2020: 2007.
[12] Zhao G X, Li J, Li T, et al. Utilizing landsat TM imagery to map greenhouses in Qingzhou,Shandong Province,China[J]. Pedosphere, 2004, 14(3):363-369
[13] Lu L Z, Di L P, Ye Y M, A decision-tree classifier for extracting transparent plastic-mulched landcover from Landsat5 TM images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11):4548-4558.
[14] Aguilar M A, Nemmaoui A, Novelli A, et al. Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series[J]. Remote Sensing, 2016, 8(6):513.
[15] González-Yebra Ó, Aguilar M A, Nemmaoui A, et al. Methodological proposal to assess plastic greenhouses land cover change from the combination of archival aerial orthoimages and Landsat data[J]. Biosystems Engineering, 2018,175:36-51.
[16] Yang D D, Chen J, Zhou Y, et al. Mapping plastic greenhouse with medium spatial resolution satellite data:Development of a new spectral index[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:47-60.
[17] Deng C B, Wu C S. BCI:A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012, 127:247-259.
[18] 史忠奎, 李培军, 罗伦, 等. 基于形态学属性剖面和单类随机森林分类的道路路域新增建筑物提取方法[J]. 北京大学学报(自然科学版), 2018, 54(1):105-114.
[18] Shi Z K, Li P J, Luo L, et al. A method for extraction of newly-built buildings in road region using morphological attribute profiles and one-class random forest[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1):105-114.
[19] Désir C, Bernard S, Petitjean C, et al. One class random forests[J]. Pattern Recognition, 2013, 46(12):3490-3506.
[20] Oshiro T M, Perez P S, Baranauskas J A. How many trees in a random forest?[C]// Machine Learning and Data Mining in Pattern Recognition:8th International Conference. Berlin Heidelberg. Springer, 2012: 154-168.
[21] Bernard S, Heutte L, Adam S. Influence of hyperparameters on random forest accuracy[C]// Multiple Classifier Systems:8th International Workshop. Berlin Heidelberg. Springer, 2009: 171-180.
[22] Tian L, Wang Z, Xue B, et al. A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space[J]. Remote Sensing of Environment, 2023, 285:113384.
[23] Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2):179-188.
[1] HUANG Fe, WANG Xiaoqiong, NIE Guanrui, YAN Jun, LI Xianyi, TIAN Jia, ZHU Cuicui, LI Qianjing, TIAN Qingjiu. Optical remote sensing-based cloud detection and extraction method for tropical and subtropical vegetation areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 58-67.
[2] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[3] DAI Yunhao, GUAN Yao, FENG Chunyong, JIANG Min, HE Xinghong. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
[4] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[5] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[6] Jun CHEN, Runping SHEN, Bolun LI, Chaopu TI, Xiaoyuan YAN, Minyue ZHOU, Shaowu WANG. The development of plastic greenhouse index based on Logistic regression analysis[J]. Remote Sensing for Land & Resources, 2019, 31(3): 43-50.
[7] Qin ZHENG, Jun PAN, Lijun JIANG, Lixin XING, Yue JI, Yifan YU, Pengju WANG, Weijing ZHONG. A study of high temperature targets identification method based on spectral index[J]. Remote Sensing for Land & Resources, 2019, 31(3): 51-58.
[8] LIN Ting, LIU Xiang-Nan, TAN Zheng. Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 59-64.
[9] JIAO Quan-Jun, ZHANG Xia, ZHANG Bing, WEI Zheng, ZHENG Lan-Fen. THE RETRIEVAL OF FOREST CHLOROPHYLL CONCENTRATION BASED ON FOLIAR SPECTRA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 26-30.
[10] WAN Yu-qing, ZHANG Feng-li, YAN Yong-zhong . A RESEARCH ON THE HYPERSPECTRAL INDEXES OF DOMINANT VEGETATION IN YANHE DRAINAGE AREA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(1): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech