Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 58-67     DOI: 10.6046/zrzyyg.2024151
|
Optical remote sensing-based cloud detection and extraction method for tropical and subtropical vegetation areas
HUANG Fe1,2(), WANG Xiaoqiong2, NIE Guanrui1, YAN Jun3, LI Xianyi3, TIAN Jia4, ZHU Cuicui2, LI Qianjing2, TIAN Qingjiu2()
1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China
2. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
3. Zhuhai Orbita Aerospace Science & Technology Co., Ltd., Zhuhai 519000, China
4. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Download: PDF(7152 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Optical satellite remote sensing images of tropical and subtropical vegetation areas are often affected by cloud cover, leading to missing remote sensing information of surface features. Effectively detecting clouds, classifying clouds and objects, and extracting cloud cover information remain hot topics and challenges in remote sensing research. Many optical cameras in domestic satellites lack the short-wave and thermal infrared spectral bands, which are used in prevailing cloud detection algorithms, reducing the image data availability after cloud removal. Hence, this study suggested detecting the spatial distribution of cloud cover by utilizing only several spectral bands in the visible light - near-infrared range (400 nm to 1 000 nm). Based on the hyperspectral remote sensing images from the Zhuhai-1 satellite, this study constructed feature space scatter plots using spectral indices, including normalized difference vegetation index (NDVI) and normalized differential water index (NDWI), for cloud/object classification and detection. Moreover, this study extracted the cloud, water, and vegetation cover information from mixed pixels. The results demonstrate that compared to conventional cloud detection methods using spectral index thresholds, the cloud detection algorithm under the NDWI-NDVI feature space used in this study exhibited a superior cloud-water separation capability and simple operability. It can precisely describe the spatial distribution characteristics of cloud cover by suppressing the shadow effect on cloud cover. Overall, this study offers a novel technical approach for further developing cloud detection, cloud-water separation, and cloud cover information extraction algorithms for domestic optical satellite remote sensing data.

Keywords spectral index      hyperspectral remote sensing      cloud detection      feature space      tropic and subtropic      Zhuhai-1 satellite     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fe HUANG
Xiaoqiong WANG
Guanrui NIE
Jun YAN
Xianyi LI
Jia TIAN
Cuicui ZHU
Qianjing LI
Qingjiu TIAN
Cite this article:   
Fe HUANG,Xiaoqiong WANG,Guanrui NIE, et al. Optical remote sensing-based cloud detection and extraction method for tropical and subtropical vegetation areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 58-67.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024151     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/58
Fig.1  Study area location diagram
Fig.2  OHS false-color and true-color images in the study area
Fig.3  Spectral curves of cloud and ground objects
Fig.4  Histogram threshold and Image segmentation of NDVI and NDWI
阈值特征分割 水体 厚云 薄云 裸土 植被
NDVI阈值 [-0.7, 0.08) [0.08, 0.3) [0.3, 0.6) [0.6, 0.7) [0.7, 1]
NDWI阈值 [-0.08, 0.1) [-0.17, -0.08) [-0.34, -0.17) [-0.43, -0.34) [-1, -0.43]
Tab.1  Segmentation featwe points of threshold of NDVI and NDWI
Fig.5  Feature space scatter plot of NDWI-NDVI
Fig.6  Process of feature space threshold classification of NDVI-NDWI
Fig.7  Result of single index threshold classification
Fig.8  Result of scatter classification NDWI-NDVI
Fig.9  Cloud coverage distribution map based on triangular space method
Fig.10  Comparison of different cloud detection methods
[1] 陈津乐, 张锦水, 段雅鸣, 等. 中分辨率遥感影像云检测与厚云去除研究综述[J]. 遥感技术与应用, 2023, 38(1):143-155.
[1] Chen J L, Zhang J S, Duan Y M, et al. A review of cloud detection and thick cloud removal in medium resolution remote sensing images[J]. Remote Sensing Technology and Application, 2023, 38(1):143-155.
[2] Saunders R W. An automated scheme for the removal of cloud contamination from AVHRR radiances over western Europe[J]. International Journal of Remote Sensing, 1986, 7(7):867-886.
[3] 朱照荣, 张锡越, 曾艳艳, 等. TBC 4.0软件下的长基线数据处理精度分析[J]. 测绘通报, 2018(4):146-149.
[3] Zhu Z R, Zhang X Y, Zeng Y Y, et al. Accuracy analysis of data processing for long baseline based on TBC 4.0 software[J]. Bulletin of Surveying and Mapping, 2018(4):146-149.
[4] 钟磊, 崔文刚, 敖德春, 等. 三种GPS基线处理软件的解算精度分析[J]. 测绘与空间地理信息, 2018, 41(2):90-93.
[4] Zhong L, Cui W G, Ao D C, et al. Three kinds of GPS baselines processing software solution precision analysis[J]. Geomatics and Spatial Information Technology, 2018, 41(2):90-93.
[5] 胡玉祥, 王智, 张洪德, 等. TBC和LGO在GNSS数据处理中的对比和应用研究[J]. 城市勘测, 2018(2):115-118.
[5] Hu Y X, Wang Z, Zhang H D, et al. Comparison and application research of TBC and LGO in GNSS data processing[J]. Urban Geotechnical Investigation & Surveying, 2018(2):115-118.
[6] 张明波. 高分辨率遥感图像云检测方法研究[D]. 大连: 大连海事大学, 2018.
[6] Zhang M B. Research on cloud detection method of high resolution remote sensing image[D]. Dalian: Dalian Maritime University, 2018.
[7] 姬森展. 基于卷积神经网络的实时遥感图像云检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[7] Ji S Z. Research on cloud detection method of real-time remote sensing image based on convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2021.
[8] 杨彬, 郭金源, 何鹏, 等. 面向HY-1C卫星CZI陆地遥感图像的云检测方法研究[J]. 遥感学报, 2023, 27(1):55-67.
[8] Yang B, Guo J Y, He P, et al. Research on cloud detection for HY-1C CZI remote sensing images collected over lands[J]. National Remote Sensing Bulletin, 2023, 27(1):55-67.
[9] 胡昌苗, 张正, 唐娉. 国产卫星多光谱数据云与云影检测算法研究[J]. 遥感学报, 2023, 27(3):623-634.
[9] Hu C M, Zhang Z, Tang P. Research on multispectral satellite image cloud and cloud shadow detection algorithm of domestic sate-llite[J]. National Remote Sensing Bulletin, 2023, 27(3):623-634.
[10] Li Z W, Shen H F, Li H F, et al. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 2017(191):342-58.
[11] 冯书谊, 张宁, 沈霁, 等. 基于反射率特性的高光谱遥感图像云检测方法研究[J]. 中国光学, 2015, 8(2):198-204.
[11] Feng S Y, Zhang N, Shen J, et al. Method of cloud detection with hyperspectral remote sensing image based on the reflective characteristics[J]. Chinese Optics, 2015, 8(2):198-204.
[12] 赵晓, 侯晴宇, 梁冰冰, 等. 基于多属性融合的高分辨率遥感图像云检测方法[J]. 光学技术, 2014, 40(2):145-150.
[12] Zhao X, Hou Q Y, Liang B B, et al. A method for cloud detection in high-resolution remote sensing image based on multi-attribute fusion[J]. Optical Technique, 2014, 40(2):145-150.
[13] 徐冬宇, 厉小润, 赵辽英, 等. 基于光谱分析和动态分形维数的高光谱遥感图像云检测[J]. 激光与光电子学进展, 2019, 56(10):101003.
[13] Xu D Y, Li X R, Zhao L Y, et al. Hyperspectral remote sensing image cloud detection based on spectral analysis and dynamic fractal dimension[J]. Laser and Optoelectronics Progress, 2019, 56(10):101003.
[14] Sun L, Yang X, Jia S, et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 2020, 41(4):1349-1371.
[15] 隋淞蔓, 夹尚丰, 胡学谦. 统一样本云检测技术在GF-6 WFV上的改进与应用[J]. 遥感学报, 2022, 26(4):646-56.
[15] Sui S M, Jia S F, Hu X Q. Improvement of unified sample cloud detection technology and its application in GF-6 WFV cloud detection[J]. National Remote Sensing Bulletin, 2022, 26(4):646-656.
[16] 吴金亮. 国产高分多光谱数据的自动云检测[J]. 计算机与网络, 2015, 41(14):45-47.
[16] Wu J L. Cloud detection algorithm for domestic high-resolution multispectral image data[J]. Computer and Network, 2015, 41(14):45-47.
[17] 高贤君, 万幼川, 郑顺义, 等. 航空摄影过程中云的实时自动检测[J]. 光谱学与光谱分析, 2014, 34(7):1909.
[17] Gao X J, Wan Y C, Zheng S Y, et al. Real-time automatic cloud detection during the process of taking aerial photographs[J]. Spectroscopy and Spectral Analysis, 2014, 34(7):1909.
[18] Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(10):1179-1188.
[19] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats4-7,8,and Sentinel 2 images[J]. Remote Sensing of Environment, 2015, 159:269-277.
[20] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150.
[21] Usman M, Liedl R, Shahid M A, et al. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12):1479-1506.
[22] Baeza S, Paruelo J M. Land use/land cover change (2000-2014) in the Rio de la plata grasslands:An analysis based on MODIS NDVI time series[J]. Remote Sensing, 2020, 12(3):381.
[23] Kodl G, Streeter R, Cutler N, et al. Arctic tundra shrubification can obscure increasing levels of soil erosion in NDVI assessments of land cover derived from satellite imagery[J]. Remote Sensing of Environment, 2024, 301:113935.
[24] Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
[25] Huang D Y, Wang C H. Optimal multi-level thresholding using a two-stage Otsu optimization approach[J]. Pattern Recognition Letters, 2009, 30(3):275-284.
[26] Rosin P L. Unimodal thresholding[J]. Pattern Recognition, 2001, 34(11):2083-2096.
[27] Xu X, Xu S, Jin L, et al. Characteristic analysis of Otsu threshold and its applications[J]. Pattern Recognition Letters, 2011, 32(7):956-961.
[28] Sobrino J A, Raissouni N, Li Z L. A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001, 75(2):256-266.
[29] Tian J, Su S, Tian Q, et al. A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101:102361.
[30] Goodwin N, Coops N C, Stone C. Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(1):11-28.
[31] Tian J, Zhang Z, Philpot W D, et al. Simultaneous estimation of fractional cover of photosynthetic and non-photosynthetic vegetation using visible-near infrared satellite imagery[J]. Remote Sensing of Environment, 2023, 290:113549.
[32] Garcı'a-Haro F J, Gilabert M A, Meliá J. Extraction of endmembers from spectral mixtures[J]. Remote Sensing of Environment, 1999, 68(3):237-253.
[1] ZHAO Guofeng, FANG Yanqi, CHEN Haofeng, YAN Weibing, HUANG Yan, CHEN Wei. Exploring carbon sequestration capacities of coastal wetland plants based on multi-parameter airborne remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(4): 88-98.
[2] XIAO Mingzhu, LI PeiJjun. A method for plastic greenhouse extraction integrating Sentinel-2 spectral indices and an improved one-class random forest[J]. Remote Sensing for Natural Resources, 2025, 37(4): 40-47.
[3] YE Wujian, XIE Linfeng, LIU Yijun, WEN Xiaozhuo, Li Yang. A MobileNet-based lightweight cloud detection model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 95-103.
[4] QI Changwei, DONG Ji’en, CHENG Xu, YE Gaofeng, HE Shuyue, DAI Wei, WANG Bing. Application of ZY-1 02D hyperspectral data to altered mineral mapping and ore prospecting in desert areas along the northern margin of the Qaidam Basin[J]. Remote Sensing for Natural Resources, 2024, 36(4): 31-42.
[5] YI Zifang, ZHOU Leilei, LUO Jianlan, CAO Li. A method for hyperspectral inversion of element contents for soil-quality evaluation of cultivated land[J]. Remote Sensing for Natural Resources, 2024, 36(3): 225-232.
[6] SONG Qi, GAO Xiaohong, SONG Yuting, LI Qiaoli, CHEN Zhen, LI Runxiang, ZHANG Hao, CAI Sangjie. Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin[J]. Remote Sensing for Natural Resources, 2024, 36(2): 160-172.
[7] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[8] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[9] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[10] DAI Yunhao, GUAN Yao, FENG Chunyong, JIANG Min, HE Xinghong. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
[11] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[12] ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
[13] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[14] YAN Junjie, GUO Xuexing, QU Jianhua, HAN Min. An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(3): 33-42.
[15] LIU Guangjin, WANG Guanghui, BI Weihua, LIU Huijie, YANG Huachao. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2): 88-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech