Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (3): 80-89    DOI: 10.6046/gtzyyg.2020.03.11
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于Inception-V3模型的高分遥感影像场景分类
蔡之灵1(), 翁谦1(), 叶少珍1, 简彩仁2
1.福州大学数学与计算机科学学院,福州 350116
2.厦门大学嘉庚学院信息科学与技术学院,漳州 363105
Remote sensing image scene classification based on Inception-V3
CAI Zhiling1(), WENG Qian1(), YE Shaozhen1, JIAN Cairen2
1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
2. School of Information Science and Technology, Xiamen University Tan Kahkee College, Zhangzhou 363105, China
全文: PDF(5410 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

传统高空间分辨率遥感影像(简称“高分遥感影像”)分类方法的“同物异谱”、“异物同谱”现象较为严重,深度学习方法为高分遥感影像分类提出了一种新的解决方案。然而,遥感影像训练样本少容易导致网络过拟合现象的发生。利用深度学习方法,结合迁移学习策略,提出了一种改进的Inception-V3的遥感图像场景分类模型。首先在原始Inception-V3模型的全连接层之前添加Dropout层,以进一步避免过拟合现象的发生; 训练过程中采用迁移学习策略,充分利用已有模型及知识,提高训练效率。基于AID和NWPU-RESISC45两个大型高分遥感场景影像的实验结果表明,改进的Inception-V3较原始的Inception-V3训练收敛速度更快,训练效果更平稳; 与其他传统方法和深度学习网络相比,本文提出的模型的分类精度也有较大的提升,验证了该模型的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡之灵
翁谦
叶少珍
简彩仁
关键词 深度学习迁移学习卷积神经网络Inception-V3遥感图像分类场景分类    
Abstract

With the deepening and cross-fusion of modern remote sensing image research, the classification of high spatial resolution remote sensing image (referred to as “high-resolution image”) has become a research hotspot in the field of remote sensing. As the phenomenon of “homology spectrum” and “homology spectrum” of high-resolution image is more serious, the deep learning method that has emerged in recent years has proposed a new solution for high-resolution image classification. However, the lack of training samples of remote sensing images can easily lead to over-fitting of deep learning networks. In this paper, an improved Inception-V3 remote sensing image scene classification model is proposed by using deep learning method and transfer learning strategy. The model first adds Dropout layer before the full connection layer of the original Inception-V3 model in order to avoid over-fitting. In the training process, the transfer learning strategy is adopted to make full use of the existing model and knowledge and improve the training efficiency. The experimental results based on AID and NWPU-RESISC45 datasets show that the improved Inception-V3 has faster convergence speed and smoother training effect than the original Inception-V3 training. Compared with accuracy of other traditional methods and deep learning networks, the classification accuracy of the proposed model has been greatly improved and verified. The effectiveness of the model is verified.

Key wordsdeep learning    transfer learning    convolutional neural network    Inception-V3    remote sensing image classification    scene classification
收稿日期: 2019-11-06      出版日期: 2020-10-09
:  TP79  
基金资助:国家自然科学基金项目“基于深度迁移学习网络的高分图像土地利用分类方法研究”(41801324);福建省自然科学基金项目“基于深度迁移学习的高分图像土地利用分类研究”(2019J01244)
通讯作者: 翁谦
作者简介: 蔡之灵(1995-),女,硕士研究生,主要研究方向为深度学习,遥感场景分类。Email: cai_zhi_ling@163.com
引用本文:   
蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
CAI Zhiling, WENG Qian, YE Shaozhen, JIAN Cairen. Remote sensing image scene classification based on Inception-V3. Remote Sensing for Land & Resources, 2020, 32(3): 80-89.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.03.11      或      https://www.gtzyyg.com/CN/Y2020/V32/I3/80
Fig.1  Inception-V3总体结构
Fig.2  Dropout和BN原理示意图
Fig.3  迁移学习中的冻结和微调
Fig.4  本文的微调步骤示意图
Fig.5  高分遥感影像场景分类流程
Fig.6  Inception和Inception-L1在AID数据集上的训练情况
Fig.7  Inception和Inception-L1在NWPU-RESISC45数据集上的训练情况
Fig.8  不同Dropout率在AID数据集上的训练情况
Fig.9  不同Dropout率在NWPU-RESISC45数据集上的训练情况
Inception-L1 test_accuracy
Dropout率0.1 Dropout率0.2 Dropout率0.4
AID 94.30±0.25 94.44±0.23 94.40±0.31
NWPU-RESISC45 93.70±0.28 93.91±0.15 3.95±0.26
Tab.1  不同Dropout率分类test_accuracy对比
方法 test_accuracy 方法 test_accuracy
AID NWPU-RESISC45 AID NWPU-RESISC45
LBP 26.26±0.52 21.74±0.18 SPM+CH 41.27±0.49 41.82±0.21
CH 34.29±0.40 27.52±0.14 VLAD+CH 44.78±0.28 50.57±0.48
SIFT 13.24±0.74 11.48±0.21 AlexNet 86.34±0.43 79.24±0.10
GIST 30.61±0.63 17.88±0.22 VGG-16 86.87±0.41 82.21±0.32
BoVW+CH 47.77±0.52 49.87±0.23 GooLeNet 83.84±0.36 78.47±0.28
IFK+CH 64.83±0.42 66.47±0.27 ResNet50 89.70±1.05 88.35±0.49
LLC+CH 49.36±0.57 46.81±0.30 Inception-V3 94.18±0.40 93.40±0.28
pLSA+CH 42.87±0.54 41.97±0.43 Inception-L1 94.44±0.23 93.95±0.15
Tab.2  各类方法分类test_accuracy对比
类别 准确率 类别 准确率
森林 100 教堂 96
裸地 100 储存罐 96
棒球场 100 飞机场 95
沙滩 100 95
山脉 100 港口 95
稀疏住宅区 100 火车站 95
草地 100 商业区 93
体育场 99 密集住宅区 92
高架桥 99 中型住宅区 92
停车场 99 工业区 91
池塘 98 学校 85
河流 98 景区 82
操场 97 广场 82
沙漠 97 中心区 78
农田 97 公园 76
Tab.3  Inception-L1在AID数据集的分类结果
Fig.10  中心区和教堂及公园和度假村示例
类别 准确率 类别 准确率
灌木丛 100 湖泊 95
圆形农田 99 高速公路 95
小岛 99 95
梯田 99 网球场 95
海冰 99 沙漠 94
棒球内场 98 稀疏住宅区 94
98 火电站 94
高尔夫球场 98 飞机 94
田径场 98 飞机场 94
港口 98 工业区 93
活动房区 98 山脉 93
停车场 98 跑道 92
雪堡 98 矩形农田 91
体育场 97 中型住宅区 91
储存罐 97 铁道 90
环岛 97 河流 90
草地 96 湿地 89
篮球场 96 密集住宅区 88
森林 96 火车站 88
96 商业区 87
立交桥 96 教堂 79
十字路口 95 宫殿 71
沙滩 95
Tab.4  Inception-L1在NWPU-RESISC45数据集的分类结果
Fig.11  教堂和宫殿示例
[1] 崔璐, 张鹏, 车进. 基于深度神经网络的遥感图像分类算法综述[J]. 计算机科学, 2018,45(s1):50-53.
Cui L, Zhang P, Che J. Overview of remote sensing image classification algorithm based on depth neural network[J]. Computer Science, 2018,45(s1):50-53.
[2] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
Zhang K, Hei B Q, Li S Y, et al. Classification of complex scene of remote sensing image based on CNN model[J]. Remote Sensing of Land and Resources, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[3] Chen C, Zhang B, Su H, et al. Land-use scene classification using multi-scale completed local binary patterns[J]. Signal,Image & Video Processing, 2016,10(4):745-752.
[4] Xia G S, Hu J W, Hu F, et al. AID:A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(7):3965-3981.
doi: 10.1109/TGRS.2017.2685945
[5] Swain M J, Ballard D H. Color indexing[J]. International Journal of Computer Vision, 1991,7(1):11-32.
doi: 10.1007/BF00130487
[6] Oliva A, Torralba A. Modeling the shape of the scene:A holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001,42(3):145-175.
doi: 10.1023/A:1011139631724
[7] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [C]//European Conference on Computer Vision.Springer, 2000: 404-420.
[8] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
[9] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification [C]//Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.San Jose:ACM, 2010: 270-279.
[10] Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories [C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).New York:IEEE, 2006: 2169-2178.
[11] Wang J, Yang J, Yu K, et al. Locality-constrained linear coding for image classification [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Francisco:IEEE, 2010: 3360-3367.
[12] Bosch A, Zisserman A, Muñoz X. Scene classification via pLSA [C]//European Conference on Computer Vision.Springer, 2006: 517-530.
[13] Perronnin F, Sánchez J, Mensink T. Improving the fisher kernel for large-scale image classification [C]//European Conference on Computer Vision.Springer, 2010: 143-156.
[14] Jegou H, Perronnin F, Douze M, et al. Aggregating local image descriptors into compact codes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(9):1704-1716.
doi: 10.1109/TPAMI.2011.235
[15] Zou Q, Ni L, Zhang T, et al. Deep learning based feature selection for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(11):2321-2325.
doi: 10.1109/LGRS.2015.2475299
[16] 葛芸, 江顺亮, 叶发茂, 等. 聚合CNN特征的遥感图像检索[J]. 国土资源遥感, 2019,31(1):49-57.doi: 10.6046/gtzyyg.2019.01.07.
Ge Y, Jiang S L, Ye F M, et al. Remote sensing image retrieval based on CNN features[J]. Remote Sensing for Land and Resources, 2019,31(1):49-57.doi: 10.6046/gtzyyg.2019.01.07.
[17] Weng Q, Mao Z, Lin J, et al. Land-use classification via extreme learning classifier based on deep convolutional features[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):704-708.
doi: 10.1109/LGRS.2017.2672643
[18] 钱晓亮, 李佳, 程塨, 等. 特征提取策略对高分辨率遥感图像场景分类性能影响的评估[J]. 遥感学报, 2018,22(5):758-776.
Qian X L, Li J, Cheng G, et al. Evaluation of the effect of feature extraction strategy on scene classification performance of high resolution remote sensing image[J]. Journal of Remote Sensing, 2018,22(5):758-776.
[19] 党宇, 张继贤, 邓喀中, 等. 基于深度学习AlexNet的遥感影像地表覆盖分类评价研究[J]. 地球信息科学学报, 2017,19(11):1530-1537.
doi: 10.3724/SP.J.1047.2017.01530
Dang Y, Zhang J X, Deng K Z, et al. Classification and evaluation of surface coverage of remote sensing images based on deep learning AlexNet[J]. Journal of Geoinformatics, 2017,19(11):1530-1537.
[20] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
[21] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-12-23)[2019-11-06]. https://arxiv.org/abs/1409.1556.
[22] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015: 1-9.
[23] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 770-778.
[24] 王鑫, 李可, 徐明君, 等. 改进的基于深度学习的遥感图像分类算法[J]. 计算机应用, 2019,39(2):382-387.
Wang X, Li K, Xu M J, et al. Improved classification algorithm of remote sensing image based on deep learning[J]. Computer Applications, 2019,39(2):382-387.
[25] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016,36(4):306-314.
Liu D W, Han L, Han X Y. Research on high-resolution remote sensing image classification based on deep learning[J]. Acta Optics Sinica, 2016,36(4):306-314.
[26] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions [C]//Conference on Computer Vision and Pattern Recognition. 2015: 1-9.
[27] Li X, Chen S, Hu X, et al.Understanding the disharmony between dropout and batch normalization by variance shift[EB/OL].(2018 -01-16)[2019-11-06]. https://arxiv.org/abs/1801.05134.
[28] 林志玮, 涂伟豪, 黄嘉航, 等. 基于FC-DenseNet的低空航拍光学图像树种识别[J]. 国土资源遥感, 2019,31(3):225-233.doi: 10.6046/gtzyyg.2019.03.28.
Lin Z W, Tu W H, Huang J H, et al. Tree species recognition based on FC-DenseNet in low altitude aerial optical images[J]. Remote Sensing for Land and Resources, 2019,31(3):225-233.doi: 10.6046/gtzyyg.2019.03.28.
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 郭晓征, 姚云军, 贾坤, 张晓通, 赵祥. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4): 130-135.
[3] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[4] 冯东东, 张志华, 石浩月. 基于多元数据的省会城市城中村精细提取[J]. 自然资源遥感, 2021, 33(3): 272-278.
[5] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[6] 武宇, 张俊, 李屹旭, 黄康钰. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2): 48-54.
[7] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[8] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[9] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[10] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[11] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[12] 郑智腾, 范海生, 王洁, 吴艳兰, 王彪, 黄腾杰. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120-129.
[13] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[14] 裴婵, 廖铁军. 面向遥感目标检测的多尺度架构搜索方法[J]. 国土资源遥感, 2020, 32(4): 53-60.
[15] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发