Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (2): 29-35    DOI: 10.6046/gtzyyg.2015.02.05
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于区域多次回波点密度分析的城区LiDAR建筑物提取
李乐林1, 江万寿2, 郭程方3
1. 湖南科技大学地理空间信息技术国家地方联合工程实验室, 湘潭 411201;
2. 武汉大学测绘遥感信息工程国家重点实验室, 武汉 430079;
3. 柳州铁道职业技术学院建筑技术学院, 柳州 545007
Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density
LI Lelin1, JIANG Wanshou2, GUO Chengfang3
1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China;
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
3. Architectural Institute of Technology, Liuzhou Railway Vocational Technical College, Liuzhou 545007, China
全文: PDF(5012 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以正确提取城区LiDAR点云中建筑物为目标,综合利用不同类别目标点云的回波特征以及地形信息,提出了一种基于区域多次回波密度分析的LiDAR点云建筑物提取方法。首先,将点云构建不规则三角网(triangulated irregular network,TIN),获取封闭的等高线; 然后,利用等高线间的拓扑关系得到等高线族区域; 最后,统计每一区域的多次回波点云密度信息,通过建筑物和树木区域多次回波点云在区域密度上的巨大差异来识别建筑物点云和树木点云。研究结果表明: 该方法既充分利用了建筑物表面与植被间多次回波特性的差异,又不否定建筑物边缘同样存在多次回波的现象; 通过封闭的等高线自适应地检测出地物目标的轮廓,弥补了传统LiDAR建筑物提取方法的不足; 该方法能够较其他方法更准确地提取建筑物。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹锴
田亦陈
袁超
张飞飞
苑全治
花利忠
关键词 净初级生产力(NPP)CASA模型遥感北京    
Abstract

A new strategy for the classification of raw LiDAR points in urban areas, which is based on the comprehensive utilization of echo features of different object types and terrain information, is proposed in this paper according to a regional multi-return density analysis. The main procedure of the classification of the off-terrain points begins with the construction of Triangulated Irregular Network (TIN), and then the region of each object is captured by the contours clustering based on the topological relations of various contours traced from the TIN. Finally, the type of the object is recognized by the statistical analysis of the regional multi-return density through the significant difference between the building region and the vegetation region. This method not only makes good use of the difference in echo features between different objects such as buildings and trees but also confirms the existence of the multi-returns on the edges of the building. At the same time, the adaptive region determination of the objects is accomplished following the contours clustering. So the proposed method can dramatically increase the classification accuracy and overcome the weakness of the traditional methods, thus being more useful to the study and application of such aspects as building reconstruction and parameters estimation of the trees. Experiments prove that the new algorithm can get an effective classification.

Key wordsnet primary productivity (NPP)    carnegie-ames-stanford approach(CASA) model    remote sensing    Beijing
收稿日期: 2013-12-25      出版日期: 2015-03-02
:  TP181  
  TP79  
基金资助:

湖南省教育厅项目"复杂环境下基于机载LiDAR点云的建筑物检测方法研究"(编号: 13C325)和国家自然科学青年基金项目"山地城市环境下等高线辅助的机载LiDAR点云复杂建筑物三维模型重建方法研究"(编号: 41401497)共同资助。

作者简介: 李乐林(1981-),男,博士,讲师,主要从事机载LiDAR数据处理及高分辨率遥感影像处理方面的研究。Email:lilelindr@126.com。
引用本文:   
李乐林, 江万寿, 郭程方. 基于区域多次回波点密度分析的城区LiDAR建筑物提取[J]. 国土资源遥感, 2015, 27(2): 29-35.
LI Lelin, JIANG Wanshou, GUO Chengfang. Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 29-35.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.02.05      或      https://www.gtzyyg.com/CN/Y2015/V27/I2/29

[1] Sithole G,Vosselman G.Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,59(1/2):85-101.

[2] 张齐勇,岑敏仪,周国清,等.城区LiDAR点云数据的树木提取[J].测绘学报,2009,38(4):330-335. Zhang Q Y,Cen M Y,Zhou G Q,et al.Extracting trees from LiDAR data in urban region[J].Acta Geodaetica et Cartographica Sinica,2009,38(4):330-335.

[3] 许晓东,张小红,程世来.航空LiDAR的多次回波探测方法及其在滤波中的应用[J].武汉大学学报:信息科学版,2007,32(9):778-781. Xu X D,Zhang X H,Cheng S L.Detection of multiple echoes and its application in filtering of airborne LiDAR[J].Geomatics and Information Science of Wuhan University,2007,32(9):778-781.

[4] 张小红.利用机载LiDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. Zhang X H.Airborne LiDAR points cloud classification based on difference of twice return pulse heights[J].Science of Surveying and Mapping,2006,31(4):48-50.

[5] 马东洋,尚大帅,保永强.一种基于高程差粗糙度的建筑物激光脚点提取方法[J].测绘科学技术学报,2013,30(2):158-161. Ma D Y,Shang D S,Bao Y Q.A building extraction method based on roughness of height difference for airborne LiDAR point cloud data[J].Journal of Geomatics Science and Technology,2013,30(2):158-161.

[6] Zhang Z X,Zhang Y J,Zhang J G,et al.Photogrammetric modeling of linear features with generalized point photogrammetry[J].Photogrammetric Engineering and Remote Sensing,2008,74(9):1119- 1127.

[7] Yang Y,Lin Y.Object-based level set model for building detection in urban area[C]//2009 Urban Remote Sensing Joint Event.Shanghai,China:IEEE,2009.

[8] 徐宏根,王建超,郑雄伟,等.面向对象的植被与建筑物重叠区域的点云分类方法[J].国土资源遥感,2012,24(2):23-27.doi:10.6046/gtzyyg.2012.02.05. Xu H G,Wang J C,Zheng X W,et al.Object-based point clouds classification of the vegetation and building overlapped area[J].Remote Sensing for Land and Resources,2012,24(2):23-27.doi:10.6046/gtzyyg.2012.02.05.

[9] 徐文学,杨必胜,魏征,等.多标记点过程的LiDAR点云数据建筑物和树冠提取[J].测绘学报,2013,42(1):51-58. Xu W X,Yang B S,Wei Z,et al.Building and tree crown extraction from LiDAR point cloud data based on multi-marked point process[J].Acta Geodaetica et Cartographica Sinica,2013,42(1):51-58.

[10] 李峰,崔希民,袁德宝,等.利用机载LiDAR点云提取复杂城市建筑物面域[J].国土资源遥感,2013,25(3):85-89.doi:10.6046/gtzyyg.2013.03.15. Li F,Cui X M,Yuan D B,et al.Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J].Remote Sensing for Land and Resources,2013,25(3):85-89.doi:10.6046/gtzyyg.2013.03.15.

[11] 任自珍,岑敏仪,张同刚,等.基于等高线的表面估计滤波方法[J].遥感学报,2009,13(1):91-96. Ren Z Z,Cen M Y,Zhang T G,et al.Filtering method of LiDAR data based on contours[J].Journal of Remote Sensing,2009,13(1):91-96.

[12] 余烨,刘晓平,Buckles B P.基于数据融合的居民区建筑物重建方法研究[J].电子学报,2014,42(2):250-256. Yu Y,Liu X P,Buckles B P.Residential building reconstruction based on data fusion[J].Acta Electronica Sinica,2014,42(2):250-256.

[13] 谢瑞,程效军,管海燕.机载激光扫描与航空影像的融合分类与精度分析[J]. 同济大学学报:自然科学版,2013,41(4):607- 613. Xie R,Cheng X J,Guan H Y.Classification and accuracy analysis of LiDAR and aerial images[J].Journal of Tongji University:Natural Science,2013,41(4):607-613.

[14] 李云帆,龚威平,林俞先,等.LiDAR点云与影像相结合的建筑物轮廓信息提取[J].国土资源遥感,2014,26(2):54-59.doi:10.6046/gtzyyg.2014.02.10. Li Y F,Gong W P,Lin Y X,et al.The extraction of building boundaries based on LiDAR point cloud data and imageries[J].Remote Sensing for Land and Resources,2014,26(2):54-59.doi:10.6046/gtzyyg.2014.02.10.

[15] Zhang K Q,Chen S C,Whitman D,et al.A progressive morphological filter for removing nonground measurements from airborne LiDAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882.

[16] 李勇,吴华意.基于形态学梯度的机载激光扫描数据滤波方法[J].遥感学报,2008,12(4):633-639. Li Y,Wu H Y.Filtering airborne LiDAR data based on morphological gradient[J].Journal of Remote Sensing,2008,12(4):633-639.

[17] Pfeifer N,Stadler P,Briese C.Derivation of digital terrain models in the SCOP++ environment[C]//OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models.Stockholm,2001.

[18] Axelsson P.Processing of laser scanner data algorithms and applications[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):138-147.

[19] Shao Y C,Chen L C.Automated searching of ground points from airborne LiDAR data using a climbing and sliding method[J].Photogrammetric Engineering and Remote Sensing,2008,74(5):625-635.

[20] Chehata N,David N,Bretar F.LiDAR data classification using hierarchical K-Means clustering[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Part B3b):325-330.

[21] Zhang J,Li L L,Lu Q P,et al.Contour clustering analysis for building reconstruction from LiDAR data[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2008,37(Part B3b):355-360.

[22] Li L L,Zhang J,Jiang W S.Automatic complex building reconstruction from LiDAR based on hierarchical structure analysis[C]//MIPPR 2009:Pattern Recognition and Computer Vision,74961J.Yichang,China:SPIE,2009.

[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发