Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 1-9    DOI: 10.6046/zrzyyg.2021126
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于高光谱特征的土壤含水量遥感反演方法综述
晏红波1,2(), 韦晚秋1, 卢献健1,2(), 杨志高1, 黎振宝1
1.桂林理工大学测绘地理信息学院,桂林 541004
2.广西空间信息与测绘重点实验室,桂林 541004
A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics
YAN Hongbo1,2(), WEI Wanqiu1, LU Xianjian1,2(), YANG Zhigao1, LI Zhenbao1
1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2. Guangxi Laboratory of Spatial Information and Mapping, Guilin 541004,China
全文: PDF(1215 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在不同时空尺度上快速、准确地估算土壤含水量是水文、环境、地质、农业和气候变化等领域研究的重点内容。目前,如何准确获取土壤含水量仍然是一项具有挑战性的任务,过去传统的基于“点”的土壤取样和分析方法费时费力,利用遥感影像反演土壤含水量具有范围广、时效快、成本低、动态对比性强等优势。其中,在高光谱遥感中土壤含水量与土壤反射率波长范围有关,至今已有多种方法被用来描述土壤含水量与高光谱遥感的关系,综述了现有的基于高光谱反射率估计土壤含水量的方法,并将其分为4大类: 光谱反射率法、函数法、模型法和机器学习法。通过比较分析了不同方法在精度、复杂性、辅助数据要求、不同模式下的可操作性以及对土壤类型的依赖性等方面的潜力和局限性,并对未来土壤含水量-高光谱反射率方面的研究提出了相应建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
晏红波
韦晚秋
卢献健
杨志高
黎振宝
关键词 高光谱漫反射反射率土壤含水量光学遥感    
Abstract

The rapid and accurate estimation of soil water content at different spatial and temporal scales is key research content in the fields of hydrology, environment, geology, agriculture, and climate change. However, it is still a challenge to obtain accurate soil water content presently. In the past, the traditional point-based soil sampling and analysis methods were time-consuming and laborious. By contrast, retrieving soil water content using remote sensing images has the advantages of a wide range, high timeliness, low cost, and strong dynamic contrast. In hyperspectral remote sensing, soil water content is related to the wavelength range of soil reflectance. So far, many methods have been used to describe the relationships between soil water content and hyperspectral remote sensing. This paper summarized existing methods for estimating soil water content based on hyperspectral reflectance and divided them into four categories: spectral reflectance methods, function methods, model methods, and machine learning methods. Moreover, this paper compared and analyzed the potential and limitations of different methods in terms of accuracy, complexity, auxiliary data requirements, operability under different modes, and the dependence on soil types. Finally, this study put forward corresponding suggestions for future research on the relationships between soil water content and hyperspectral reflectance.

Key wordshyperspectral    diffuse reflectance    reflectance    soil water content    optical remote sensing
收稿日期: 2021-04-23      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:广西空间信息与测绘重点实验室开放基金项目“广西地区农业干旱遥感监测及预警方法研究”(桂科能19-050-11-23);广西自然科学基金项目“基于高分影像的喀斯特地区土壤水分反演关键问题研究”(2022GXNSFBA035639);国家自然科学基金项目“地基和星载GNSS-R融合的花岗岩滑坡高时空分辨率土壤湿度反演研究”(42064003)
通讯作者: 卢献健
作者简介: 晏红波(1983-),女,博士,副教授,主要从事遥感数据处理及其应用的研究。Email: 56403075@qq.com
引用本文:   
晏红波, 韦晚秋, 卢献健, 杨志高, 黎振宝. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2): 1-9.
YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021126      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/1
Fig.1  θ-R 的变化关系[10]
Fig.2  θ-R关系的不同分类方法
类别 方法 波长/nm N R2② RMSE 代表性文献 优点 缺点
波谱反射率法 反射率差分指数法 2 062,2 250 18 0.69 0.08 Haubrock等[1] 土壤类型影响小 计算相对复杂
反射率指数模型法 350~2 500 4 - - Lobell等[10] 短波红外范围应用良好 不适用土壤体积含水量低于20%的情况
反射率比值指数法 1 944 18 0.68 0.08 刘伟东等[13] 计算方便快速 依赖干燥土壤光谱信息
反射率一阶导数法 1 834,1 836 18 0.63 0.08 刘伟东等[13] 无需先验土壤信息 产生冗余的光谱信息
相对反射率法 1 998 10 0.84 0.04 刘伟东[15] 计算简单快速 不适用于野外
反射率物理模型法 350~2 100 1 >0.99 - van Genuchten[27] 考虑到土壤的物理特性 需获取特定初始信息,应用具有局限性
函数法 反高斯函数法 1 200~2 500 257 0.92 0.03 Whiting等[29] 可以结合各类高光谱模式使用 难以确定输入信息,须对光谱进行额外处理
模型法 光学模型法 350~2 100 1 >0.97 - Haubrock等[1] 无需考虑高光谱反射率 应用具有局限性
机器学习法 SMLR 1 623~2 467 1 571 0.88 5.19 申艳等[38] 减少变量间的共线性问题 信息易丢失,导致模型的过适应性
PCR 400~2 498 802 0.84 0.005 申艳等[38] 应用全部的光谱信息 计算繁琐
PLSR 401~1 699 360 0.97 0.02 Svante等[40]
830~2 630 403 0.96 0.60 李晓明[39] 应用全部的光谱信息 无法解释土壤光谱间的非线性效应
370~1 979 1 160 0.66 0.76 Svante等[40]
ANN 420~800 - 0.77 2.00 Leila等[45] 自动学习分析,无需基础辅助参数 容易过度拟合
SVMR 370~1 979 1 160 0.69 0.72 Vapnik等[46] 无需基础辅助参数 仅适用于密集型计算
MLR 450~2 500 40 0.68~0.96 - 贾学勤等[47] 不受土壤类型影响 忽略某些点的光谱信息
MARS 370~1 979 1 160 0.73 0.67 Friedman[48] 自动建立联系,无需基础辅助参数 过程繁琐
Tab.1  利用高光谱特征估计土壤含水量的不同方法性能比较
[1] Haubrock S N, Chabrillat S, Lemmnitz C, et al. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29.
doi: 10.1080/01431160701294695
[2] Reynolds S G. The gravimetric method of soil moisture determination Part III:An examination of factors influencing soil moisture variability[J]. Journal of Hydrology, 1970, 3(11):288-300.
[3] Ledieu J, Ridder P, Clerck P, et al. A method of measuring soil moisture by time-domain reflectometry[J]. Journal of Hydrology, 1986, 88(3/4):319-328.
doi: 10.1016/0022-1694(86)90097-1
[4] Chanasyk D S, Naeth M A. Field measurement of soil moisture using neutron probes[J]. Canadian Journal of Soil Science, 1996, 76(3):317-323.
doi: 10.4141/cjss96-038
[5] Dean T J, Bell J P, Baty J B. Soil moisture measurement by an improved 400 capacitance technique,Part I.Sensor design and performance[J]. Journal of Hydrology, 1987, 401(1-2):67-78.
[6] Engman E T. Applications of microwave remote sensing of soil moisture for water resources and agriculture[J]. Remote Sensing of Environment, 1991, 35(2-3):213-226.
doi: 10.1016/0034-4257(91)90013-V
[7] Qin Y, Liu X N, Jonathan L, et al. Lithology identification of the north Qilian belt by surface temperature and spectral emissivity information derived from ASTER TIR data[J]. International Journal of Remote Sensing Applications, 2013, 3(4):235-239.
[8] Wang X, Venugopal G. Optical fiber meta magnetics[J]. Optics Express, 2011, 19(21):19813-19821.
doi: 10.1364/OE.19.019813 pmid: 21996989
[9] Sandholt I, Kjeld R, Jens A. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224.
doi: 10.1016/S0034-4257(01)00274-7
[10] Lobell D B, Asner G P. View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS[J]. International Journal of Remote Sensing, 2002, 23(11):2247-2262.
doi: 10.1080/01431160110075613
[11] Stevens A, Marco N. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy[J]. PLoS ONE, 2013, 8(6):337-347.
[12] Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland.II.Total organic carbon and its rate of loss from the soil profile[J]. Soil Research, 1986, 24(2):281-292.
doi: 10.1071/SR9860281
[13] 刘伟东, Baret F, 张兵, 等. 应用高光谱遥感数据估算土壤表层水分的研究[J]. 遥感学报, 2004, 8(5):434-442.
Liu W D, Barnet F, Zhang B, et al. Study on the estimation of soil surface water by hyperspectral remote sensing data[J]. Journal of Remote Sensing, 2004, 8(5):434-442.
[14] Haubrock S N, Chabrillat S. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29.
doi: 10.1080/01431160701294695
[15] 刘伟东. 高光谱遥感土壤信息提取与挖掘研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2002.
Liu W D. Extraction and mining of soil information from hyperspectral remote sensing[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2002.
[16] Etienne M, Henri D. Modeling soil moisture-reflectance[J]. Remote Sensing of Environment, 2001, 76(2):173-180.
doi: 10.1016/S0034-4257(00)00198-X
[17] Bob S B, Raphael A, Viscarra R, et al. Visible and near infrared spectroscopy in soil science[J]. Advances in Agronomy, 2010, 107:163-215.
[18] Sarathjith M C, Bhabani S D, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376.
doi: 10.2136/sssaj2013.08.0377
[19] Tian J, Philpot W D. Relationship between surface soil water content,evaporation rate,and water absorption band depths in SWIR reflectance spectra[J]. Remote Sensing of Environment, 2015, 169:280-289.
doi: 10.1016/j.rse.2015.08.007
[20] Bablet A, Vu P V, Jacquemoud S, et al. MARMIT:A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400-2 500 nm)[J]. Remote Sensing of Environment, 2018, 217:1-17.
doi: 10.1016/j.rse.2018.07.031
[21] Gao C, Xu M, Xu H Z Y, et al. Retrieving photometric properties and soil moisture content of tidal flats using bidirectional spectral reflectance[J]. Remote Sensing, 2021, 13(7):1402.
doi: 10.3390/rs13071402
[22] 刘伟东, Baret F, 张兵, 等. 高光谱遥感土壤湿度信息提取研究[J]. 土壤学报, 2004, 5:700-706.
Liu W D, Baret F, Zhang B, et al. Extraction of soil moisture information from hyperspectral remote sensing[J]. Acta Pedologica Sinica, 2004, 5:700-706.
[23] Tian J, Yue J B, Philpot W D, et al. Soil moisture content estimate with drying process segmentation using shortwave infrared bands[J]. Remote Sensing of Environment, 2021, 263:112552.
doi: 10.1016/j.rse.2021.112552
[24] Yue J B, Tian J, Qing J T, et al. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:216-230.
doi: 10.1016/j.isprsjprs.2019.06.012
[25] Fabre S, Xavier B. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 mm domain[J]. Sensors, 2015, 15:3262-3281.
doi: 10.3390/s150203262
[26] Lobell D B, Gregory P A. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66(3):722.
doi: 10.2136/sssaj2002.7220
[27] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898.
doi: 10.2136/sssaj1980.03615995004400050002x
[28] Nolet C, Ate P, Peter R, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.
[29] Whiting M L, Lin L, Susan L U. Predicting water content using Gaussian model on soil spectra[J]. Remote Sensing of Environment, 2004, 89:535-552.
doi: 10.1016/j.rse.2003.11.009
[30] Philpot W D. Spectral reflectance of wetted soils[C]// Proceedings of Art,Science and Applications of Reflectance Spectroscopy (ASARS), 2010:1-12.
[31] Segelstein D J. The complex refractive index of water[D]. Kansas: University of Missouri, 1981.
[32] Kou L H, Daniel L, Petry C R. Indices of water and ice in the 0.65 to 2.5 mm spectral range[J]. Applied Optics, 1993, 32(19):3531-3540.
doi: 10.1364/AO.32.003531 pmid: 20829977
[33] Nolet C, Poortinga A, Roosjen P, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.
[34] Sadeghi M, Jones S B, Philpot W D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands[J]. Remote Sensing of Environment, 2015, 164:66-76.
doi: 10.1016/j.rse.2015.04.007
[35] Dalal R C, Henry R J. Simultaneous determination of moisture,organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1):120-123.
doi: 10.2136/sssaj1986.03615995005000010023x
[36] 王涛, 喻彩丽, 姚娜, 等. MLR和PLSR的沙壤土盐分含量光谱检测对比研究[J]. 干旱区地理, 2018, 41(6):1295-1302.
Wang T, Yu C L, Yao N, et al. Comparative study on spectral detection of salt content in sandy loam soil by MLR and PLSR[J]. Arid Land Geography, 2018, 41(6):1295-1302.
[37] Chang C W, David H. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2):480-490.
doi: 10.2136/sssaj2001.652480x
[38] 申艳, 张晓平, 梁爱珍, 等. 近红外光谱法在土壤有机质研究中的应用[J]. 核农学报, 2010, 24(1):199-207.
Shen Y, Zhang X P, Liang A Z, et al. Application of near infrared spectroscopy in soil organic matter research[J]. Acta Nucifera Sinica, 2010, 24(1):199-207.
[39] 李晓明. 基于PLSR的土壤水分光谱特征研究[J]. 西部大开发(土地开发工程研究), 2017, 2(9):49-54.
Li X M. Spectral characteristics of soil moisture based on PLSR[J]. Western Development (Land Development Engineering), 2017, 2(9):49-54.
[40] Svante W, Michael S, Lennart E. PLS-regression:A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2):109-130.
doi: 10.1016/S0169-7439(01)00155-1
[41] Mouazen A M, Karoui R. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the munsell soil colour charts[J]. Biosystems Engineering, 2007, 97(2):131-141.
doi: 10.1016/j.biosystemseng.2007.03.023
[42] Nawar S, Mouazen A M. Comparison between random forests,artificial neural networks and gradient boosted machines methods of on-line VIS-NIR spectroscopy measurements of soil total nitrogen and total carbon[J]. Sensors, 2017, 17(10):2428.
doi: 10.3390/s17102428
[43] 尚天浩, 贾萍萍, 孙媛, 等. 宁夏银北地区盐碱化土壤水分光谱特征及模型拟合精度分析[J]. 水土保持通报, 2020, 40(4):183-189.
Shang T H, Jia P P, Sun Y, et al. Spectral characteristics and model fitting accuracy of saline alkali soil water in Yinbei area of Ningxia[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):183-189.
[44] 吴士文, 王昌昆, 刘娅, 等. 高光谱成像的土壤剖面水分含量反演及制图[J]. 光谱学与光谱分析, 2019, 39(9):2847-2854.
Wu S W, Wang C K, Liu Y, et al. Retrieval and mapping of soil moisture content in hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2847-2854.
[45] Leila H E, Alfonso T R. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks[J]. Remote Sensing, 2015, 7(3):2627-2646.
doi: 10.3390/rs70302627
[46] Vapnik V, Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12(9):2013-2036.
pmid: 10976137
[47] 贾学勤, 冯美臣, 杨武德, 等. 基于SPA-MLR方法的土壤含水量光谱预测模型研究[J]. 干旱地区农业研究, 2018, 36(3):266-269,291.
Jia X Q, Feng M C, Yang W D, et al. Study on spectral prediction model of soil water content based on SPA-MLR method[J]. Agricultural Research in Arid Areas, 2018, 36(3):266-269,291.
[48] Friedman J H. Multivariate adaptive regression splines[J]. The Annals of Statistics, 1991, 19(1):1-67.
[49] Kůrková V. Kolmogorov’s theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3):501-506.
doi: 10.1016/0893-6080(92)90012-8
[50] Sarathjith M C, Bhabani S D, Hitesh B V, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376.
doi: 10.2136/sssaj2013.08.0377
[51] 翁永玲, 戚浩平, 方洪宾, 等. 基PLSR方法的青海茶卡—共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6):1255-1263.
Weng Y L, Qi H P, Fang H B, et al. Hyperspectral remote sensing inversion of soil salinity in Chaka Gonghe basin of Qinghai Province based on PLSR method[J]. Acta Pedologica Sinica, 2010, 47(6):1255-1263.
[52] 朱亚星, 周桢津, 洪永胜, 等. 耦合高光谱数据估算土壤含水率的方法[J]. 华中师范大学学报(自然科学版), 2017, 51(1):123-129.
Zhu Y X, Zhou Z J, Hong Y S, et al. Method for estimating soil moisture content by coupling hyperspectral data[J]. Journal of Central China Normal University (Natural Science Edition), 2017, 51(1):123-129.
[53] Kaingo J, Nganga I K. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics[J]. Applied and Environmental Soil Science, 2018:1-10.
[54] Balabin R M, Ekaterina I L. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry ? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data[J]. Analyst, 2011, 136:1703-1712.
doi: 10.1039/c0an00387e pmid: 21350755
[55] Thissen U, Bülent U, Willem J M, et al. Multivariate calibration with least-squares support vector machines[J]. Analytical Chemistry, 2004, 76(11):3099-3105.
pmid: 15167788
[56] Nawar S, Abdul M M. Predictive performance of mobile VIS-NIR infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques[J]. Catena, 2017, 151:118-129.
doi: 10.1016/j.catena.2016.12.014
[57] 胡振琪, 张学礼. 基于ANN的复垦土壤水分特征曲线的预测研究[J]. 农业工程学报, 2008(10):15-19.
Hu Z Q, Zhang X L. Prediction of reclaimed soil water characteristic curve based on ANN[J]. Journal of Agricultural Engineering, 2008(10):15-19.
[1] 郭艺, 甘甫平, 闫柏琨, 白娟, 邢乃琛, 刘琪. 1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023, 35(3): 241-252.
[2] 王嘉芃, 徐建国, 沈家晓, 张登荣. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3): 284-291.
[3] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[4] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[5] 张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
[6] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[7] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[8] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[9] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
[10] 王界, 王光辉, 刘宇, 齐建伟, 张涛. 基于PROSPECT-VISIR模型构建新植被水分指数[J]. 自然资源遥感, 2022, 34(2): 56-62.
[11] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[12] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[13] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[14] 陈洁, 张立福, 张琳珊, 张红明, 童庆禧. 紫外-可见光水质参数在线监测技术研究进展[J]. 自然资源遥感, 2021, 33(4): 1-9.
[15] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发