Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 105-111    DOI: 10.6046/zrzyyg.2022100
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
改进3D-CNN的高光谱图像地物分类方法
郑宗生(), 刘海霞(), 王振华, 卢鹏, 沈绪坤, 唐鹏飞
上海海洋大学信息学院,上海 201306
Improved 3D-CNN-based method for surface feature classification using hyperspectral images
ZHENG Zongsheng(), LIU Haixia(), WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei
Department of Information, Shanghai Ocean University, Shanghai 201306, China
全文: PDF(3282 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高光谱图像具有数据量大、波段多和波段间相关性强等特性,传统高光谱分类方法通常单独考虑光谱和空间信息,特征提取不充分,忽略了图像纹理构造和重要光谱信息。针对这些问题,提出一种基于卷积神经网络(convolution neural network,CNN)的高光谱分类方法。该方法基于三维CNN(3D CNN),处理多尺度空谱数据,并对双重注意力机制进行改进,提出光谱注意力机制; 其次,采取跨层特征融合和多通道特征提取策略,进一步提高地物分类精度。选取“高分五号”卫星拍摄的2景影像共6 043个样本作为实验数据,并将提出的方法与支持向量机(support vector machine,SVM),一维CNN(1D CNN),二维CNN(2D CNN),3D CNN和残差网络(residual network,ResNet)进行比较分析。结果表明,所提方法的总体精度(overall accuracy,OA)和Kappa系数均有显著提高,OA值均达到95%以上。其中,OA在江苏南通地区数据集上达到了95.84%,较SVM,1D CNN,2D CNN,3D CNN和ResNet方法分别提高了21.54,21.71,7.28,3.94,2.56百分点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑宗生
刘海霞
王振华
卢鹏
沈绪坤
唐鹏飞
关键词 高光谱图像地物分类三维卷积神经网络注意力机制特征融合    
Abstract

Hyperspectral images are characterized by large data volumes, multiple bands, and strong interband correlation. Conventional classification methods using hyperspectral images usually consider only spectral or spatial information, while suffering insufficient feature extraction and ignoring the texture structures and important spectral information of images. Aiming at these problems, this study proposed a new classification method using hyperspectral images. First, multi-scale spatial-spectral data were processed based on the three-dimensional convolutional neural network (3D CNN), and a spectral attention mechanism was proposed by improving the dual attention mechanism. Then, the classification accuracy of surface features was further improved by adopting cross-layer feature fusion and multi-channel feature extraction strategies. In this study, 6 043 samples of two scenes of images captured by the GF-5 satellite were selected as experimental data. The proposed method was compared with five other methods, namely the support vector machine (SVM), the one-dimensional convolutional neural network (1D CNN), the two-dimensional convolutional neural network (2D CNN), the 3D CNN, and the residual network (ResNet). The results show that the method proposed in this study yielded significantly improved overall accuracy (OA) and Kappa coefficients with averages of 95.25% and 0.943, respectively. When applied to the dataset of Nantong, Jiangsu, this method yielded OA of up to 95.84%, which was 21.54, 21.71, 7.28, 3.94, and 2.56 percentage points higher than that of the five other methods, respectively.

Key wordshyperspectral image    surface feature classification    3D CNN    attention mechanism    feature fusion
收稿日期: 2022-03-21      出版日期: 2023-07-07
ZTFLH:  TP751  
基金资助:国家自然科学基金项目“一种面向多模态遥感信息的质量抽样检验方案研究”(41671431);上海市科委市地方能力建设项目“复杂潮汐环境影响下海岛(礁)地物信息提取与精度验证方法及其示范应用”(19050502100);国家海洋局数字海洋科学技术重点实验室开放基金项目“面向深度学习与气象云图大数据的台风强度分类研究”(B201801034)
通讯作者: 刘海霞(1997-),女,硕士研究生,研究方向为遥感图像分类。Email: 717468912@qq.com
作者简介: 郑宗生(1979-),男,博士,副教授,研究方向为遥感图像处理。Email: zszheng@shou.edu.cn
引用本文:   
郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022100      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/105
Fig.1  本文分类网络结构
Fig.2  三重注意力机制结构
Fig.3  特征融合示意图
Fig.4  实验数据遥感影像
类别 崇明数据集 南通数据集
耕地 784 538
建筑物 703 757
水体 461 603
泥滩 357 375
农田 505 960
总数 2 810 3 233
Tab.1  各数据集样本数(个)
Fig.5  实验数据分类结果
模型 崇明数据集 南通数据集
OA/% Kappa OA/% Kappa
SVM 74.18 0.697 74.30 0.680
1D CNN 70.61 0.622 74.13 0.677
2D CNN 88.15 0.849 88.56 0.854
3D CNN 90.83 0.876 91.90 0.893
ResNet 92.17 0.900 93.28 0.914
本文方法 95.21 0.939 95.84 0.947
Tab.2  不同方法的对比结果
Fig.6  不同模型的崇明数据集分类结果
卷积核个数 崇明数据集 南通数据集
OA/% Kappa OA/% Kappa
8 95.01 0.937 95.58 0.944
16 95.21 0.939 95.84 0.947
32 93.23 0.914 94.92 0.935
40 93.89 0.922 94.08 0.924
Tab.3  不同卷积核个数的对比结果
[1] 叶珍, 白璘, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8):1737-1763.
Ye Z, Bai L, He M Y. Overview of spatial spectrum feature extraction of hyperspectral images[J]. Chinese Journal of image and graphics, 2021, 26(8):1737-1763.
[2] 王振华, 张鑫月, 刘智翔, 等. 遥感地物分割的改进格子玻尔兹曼并行模型[J]. 遥感信息, 2021, 36(4):1-6.
Wang Z H, Zhang X Y, Liu Z X, et al. Improved lattice Boltzmann parallel model for remote sensing ground object segmentation[J]. Remote Sensing Information, 2021, 36(4):1-6.
[3] 涂兵, 张晓飞, 张国云, 等. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
doi: 10.6046/gtzyyg.2019.01.04
Tu B, Zhang X F, Zhang G Y, et al. Hyperspectral remote sensing image classification method based on recursive filtering and KNN[J]. Remote Sensing of Land and Resources, 2019, 31(1):22-32.doi: 10.6046/gtzyyg.2019.01.04.
doi: 10.6046/gtzyyg.2019.01.04
[4] Peng J, Zhou Y, Chen C. Region-kernel-based support vector machines for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):4810-4824.
doi: 10.1109/TGRS.2015.2410991
[5] Peng J, Li L, Tang Y Y. Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30:1790-1802.
doi: 10.1109/TNNLS.5962385
[6] Chen G Y. Multiscale filter-based hyperspectral image classification with PCA and SVM[J]. Journal of Electrical Engineering, 2021, 72(1):40-45.
doi: 10.2478/jee-2021-0006
[7] 梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10):2724-2728.
pmid: 21137408
Liang L, Yang M H, Li Y F. Hyperspectral remote sensing image classification based on ICA and SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2724-2728.
pmid: 21137408
[8] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090.
Zhang B. Hyperspectral image processing and information extraction frontier[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.
[9] Tong L, Zhang J, Ye Z. Classification of hyperspectral image based on deep belief networks[C]// 2014 IEEE International Conference on Image Processing (ICIP), 2014:5132-5136.
[10] Zabalza J, Ren J C, Zheng J B, et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging[J]. Neurocomputing, 2016, 185:1-10.
doi: 10.1016/j.neucom.2015.11.044
[11] Hu W, Huang Y Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015:1-12.
[12] Zhao W, Du S. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113:155-165.
doi: 10.1016/j.isprsjprs.2016.01.004
[13] Yue J, Zhao W, Mao S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(4-6):468-477.
doi: 10.1080/2150704X.2015.1047045
[14] Ghamisi P, Chen Y, Xiao X Z. A self-improving convolution neural network for the classification of hyperspectral data[J]. IEEE Geoence and Remote Sensing Letters, 2017, 13(10):1537-1541.
[15] Makantasis K, Karantzalos K, Doulamis A, et al. Deep supervised learning for hyperspectral data classifification through convolutional neural networks[J]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015:4959-4962.
[16] Li Y, Zhang H K, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
doi: 10.3390/rs9010067
[17] Woo S, Park J, Lee J, et al. CBAM:Convolutional block attention module[J]. Springer, 2018, 11211:3-19.
[18] Sun H, Zheng X T, Lu X Q, et al. Spectral-spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3232-3245.
doi: 10.1109/TGRS.36
[19] Hang R L, Li Z, Liu Q S, et al. Hyperspectral image classification with attention-aided CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2281-2293.
doi: 10.1109/TGRS.36
[20] Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231.
pmid: 22392705
[21] 韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2) :11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
Han Y L, Cui P X, Yang S H, et al. Classification of hyperspectral images based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33(2) :11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[3] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[4] 金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
[5] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[6] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[7] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[8] 王艺儒, 王光辉, 杨化超, 刘慧杰. 基于生成对抗网络的遥感影像色彩一致性方法[J]. 自然资源遥感, 2022, 34(3): 65-72.
[9] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
[10] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[11] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[12] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[13] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[14] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[15] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发