Soil moisture (SM) plays an irreplaceable role in agricultural production, and agricultural water use, yield estimation, and drought monitoring are all closely related to SM. Therefore, it is of great significance to monitor the changes in SM. At present, the remote sensing technique is an effective tool for the monitoring of the changes in SM in large areas. Optical remote sensing is sensitive to the composition of surface vegetation, while microwaves can penetrate vegetation to obtain the information of SM under vegetation. Meanwhile, the sensitivity of synthetic aperture Radar (SAR) backscattering to the changes in SM is greatly affected by the vegetation canopy. In areas covered by vegetation, microwave remote sensing will be affected by both surface roughness and vegetation. Therefore, the joint application of optical and SAR remote sensing can well remove the impacts of vegetation and surface roughness, thus improving the inversion accuracy of SM. This paper summarizes the remote sensing models and retrieval methods commonly used in the research on the cooperative inversion of SM using optical and SAR remote sensing. Meanwhile, it proposes the difficulties in the research and the future development of the cooperative inversion.
艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
Zhou P, Ding J L, Wang F, et al. Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data[J]. Journal of Remote Sensing, 2010,14(5):959-973.
[2]
Hajj M E, Baghdadi N, Zribi M, et al. Soil moisture retrieval over irrigated grassland using X-band SAR data[J]. Remote Sensing of Environment, 2016,176:202-218.
doi: 10.1016/j.rse.2016.01.027
[3]
Jackson T J, Le Vine D M, Hsu A Y, et al. Soil moisture mapping at regional scales using microwave radiometry:The southern great plains hydrology experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(5):2136-2151.
doi: 10.1109/36.789610
[4]
Narayanan R M, Hegde M S. Soil moisture estimation using combined multifrequency SAR data:A comparison between two inversion models using simulation[J]. Geocarto International, 2000,15(3):65-76.
doi: 10.1080/10106040008542165
[5]
Zhao T, Hu L, Shi J, et al. Soil moisture retrievals using L-band radiometry from variable angular ground-based and airborne observations[J]. Remote Sensing of Environment, 2020,248:111958.
doi: 10.1016/j.rse.2020.111958
[6]
De Roo R D, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4):864-872.
doi: 10.1109/36.917912
[7]
Verhoest N E C, Lievens H, Wagner W, et al. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture Radar[J]. Sensors, 2008,8(7):4213-4248.
pmid: 27879932
[8]
Marzahn P, Ludwig R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling[J]. Hydrology and Earth System Sciences, 2009,13(3):381-394.
doi: 10.5194/hess-13-381-2009
Zhao K, Huang Z Y. The study of soil moisture retrieval based on improved thermal inertia model[J]. Geomatics and Spatial Information Technology, 2017,40(5):41-43.
Yu F, Zhao Y S. A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas[J]. Science China Earth Sciences, 2011,41(4):532-540.
Kong J L, Li J J, Zhen P P, et al. Inversion of soil moisture in arid area based on microwave and optical remote sensing data[J]. Journal of Geo-Information Science, 2016,18(6):857-863.
Li K, Zhang R, Duan J L, et al. Wide-area soil moisture retrieval using SAR images and multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(7):134-140.
Ma H Z, Zhang L J, Sun L, et al. Farmland soil moisture inversion by synergizing optical and microwave remote sensing data[J]. Journal of Remote Sensing, 2014,18(3):673-685.
[14]
Paloscia S, Pettinato S, Santi E, et al. Soil moisture mapping using Sentinel-1 images:Algorithm and preliminary validation[J]. Remote Sensing of Environment, 2013,134:234-248.
doi: 10.1016/j.rse.2013.02.027
[15]
Huang S, Ding J, Liu B, et al. The capability of integrating optical and microwave data for detecting soil moisture in an oasis region[J]. Remote Sensing, 2020,12(9):1358.
doi: 10.3390/rs12091358
He L, Qin Q M, Ren H Z, et al. Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):142-148.
Liu Z C, Feng M C, Xu L S, et al. Soil moisture retrieval of farmland in southern Shanxi:Based on Sentinel multi-source data[J]. Chinese Agricultural Science Bulletin, 2020,36(20):51-58.
Zhang Y, Ding J L, Zhou P. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011,34(4):671-678.
Wang S G, Li X, Han X J, et al. Derivation of surface soil moisture in the middle stream of Heihe River Basin using multi-temporal ASAR images[J]. Remote Sensing Technology and Application, 2009,24(5):582-587,552.
Liang S L, Bai R, Chen X N, et al. Review of China's land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020,24(6):618-671.
[21]
Karthikeyan L, Pan M, Konings A G, et al. Simultaneous retrieval of global scale vegetation optical depth,surface roughness,and soil moisture using X-band AMSR-E observations[J]. Remote Sensing of Environment, 2019,234:111473.
doi: 10.1016/j.rse.2019.111473
[22]
Notarnicola C. A bayesian change detection approach for retrieval of soil moisture variations under different roughness conditions[J]. IEEE Geoscience and Remote Sensing Letters, 2013,11(2):414-418.
doi: 10.1109/LGRS.8859
[23]
Zeng J, Chen K S, Bi H, et al. A comprehensive analysis of rough soil surface scattering and emission predicted by AIEM with comparison to numerical simulations and experimental measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):1696-1708.
doi: 10.1109/TGRS.2016.2629759
[24]
Wu T D, Chen K S, Shi J, et al. A transition model for the reflection coefficient in surface scattering[J]. IEEE Transactions on Geo-science and Remote Sensing, 2001,39(9):2040-2050.
doi: 10.1109/36.951094
[25]
Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(1):90-101.
doi: 10.1109/TGRS.2002.807587
[26]
Wu T D, Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(4):743-753.
doi: 10.1109/TGRS.2003.815405
[27]
Yang Y, Chen K S, Tsang L, et al. Depolarized backscattering of rough surface by AIEM model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(11):4740-4752.
doi: 10.1109/JSTARS.4609443
[28]
Shi J, Chen K S, Li Q, et al. A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(12):2674-2686.
doi: 10.1109/TGRS.2002.807003
[29]
Dubois P C, Van Zyl J, Engman T. Measuring soil moisture with imaging Radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(4):915-926.
doi: 10.1109/36.406677
[30]
Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for Radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(2):370-381.
doi: 10.1109/36.134086
[31]
Wigneron J-P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(8):1697-1707.
doi: 10.1109/36.942548
[32]
Allen W A, Gausman H W, Richardson A J, et al. Interaction of isotropic light with a compact plant leaf[J]. Josa, 1969,59(10):1376-1379.
doi: 10.1364/JOSA.59.001376
[33]
Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling:The SAIL model[J]. Remote Sensing of Environment, 1984,16(2):125-141.
doi: 10.1016/0034-4257(84)90057-9
[34]
Suits G H. The calculation of the directional reflectance of a vegetative canopy[J]. Remote Sensing of Environment, 1971,2:117-125.
doi: 10.1016/0034-4257(71)90085-X
[35]
Jacquemoud S. Inversion of the PROSPECT+ SAIL canopy reflectance model from AVIRIS equivalent spectra:Theoretical study[J]. Remote Sensing of Environment, 1993,44(2-3):281-292.
doi: 10.1016/0034-4257(93)90022-P
[36]
Ulaby F T, Allen C T, Eger Iii G, et al. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment, 1984,14(1-3):113-133.
doi: 10.1016/0034-4257(84)90010-5
[37]
Lievens H, Verhoest N E. On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling,the IEM,and effective roughness parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(4):740-744.
doi: 10.1109/LGRS.2011.2106109
[38]
Kweon S K, Oh Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(5):2802-2809.
doi: 10.1109/TGRS.2014.2364914
[39]
Joseph A T, Van der Velde R, O'Neill P E, et al. Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) Radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2365-2374.
doi: 10.1109/TGRS.2008.917214
[40]
Joseph A T, Van der Velde R, O'Neill P E, et al. Effects of corn on C- and L-band Radar backscatter:A correction method for soil moisture retrieval[J]. Remote Sensing of Environment, 2011,114(11):2417-2430.
doi: 10.1016/j.rse.2010.05.017
[41]
Prakash R, Singh D, Pathak N P. A fusion approach to retrieve soil moisture with SAR and optical data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(1):196-206.
doi: 10.1109/JSTARS.4609443
[42]
Bai X, He B. Potential of Dubois model for soil moisture retrieval in prairie areas using SAR and optical data[J]. International Journal of Remote Sensing, 2015,36(21-22):5737-5753.
doi: 10.1080/01431161.2015.1103920
[43]
Ulaby F T, Sarabandi K, Mcdonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7):1223-1253.
doi: 10.1080/01431169008955090
Du H J, Liu Q H, Li J, et al. Retrieving crop leaf area index by combining optical and microwave vegetation indices:A feasibility analysis[J]. Journal of Remote Sensing, 2013,17(6):1587-1611.
Ma T, Han L, Liu Q M. Inversion of surface soil moisture content of Spanish farmland using modified water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(24):129-135.
[46]
Han L, Chen L W, Zhang Y C, et al. A method of microwave soil moisture inversion without dependence on the field measurement data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018,XLII-3:459-465.
doi: 10.5194/isprs-archives-XLII-3-459-2018
Han L, Zhang Y C. Synergistic inversion of soil moisture in vegetation-covered area based on optical and microwave data[J]. Journal of Water Resources and Water Engineering, 2018,29(4):230-235.
[48]
Yadav V P, Prasad R, Bala R, et al. An improved inversion algorithm for spatio-temporal retrieval of soil moisture through modified water cloud model using C- band Sentinel-1A SAR data[J]. Computers and Electronics in Agriculture, 2020,173:105447.
doi: 10.1016/j.compag.2020.105447
[49]
Park S E, Jung Y T, Cho J H, et al. Theoretical evaluation of water cloud model vegetation parameters[J]. Remote Sensing, 2019,11(8):894.
doi: 10.3390/rs11080894
[50]
Wang L, He B, Bai X, et al. Assessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data[J]. Photogrammetric Engineering and Remote Sensing, 2019,85(1):43-54.
doi: 10.14358/PERS.85.1.43
[51]
Mattar C, Wigneron J P, Sobrino J A, et al. A combined optical-microwave method to retrieve soil moisture over vegetated areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(5):1404-1413.
doi: 10.1109/TGRS.2011.2179051
Bao Y S, Liu L Y, Wang J H. Soil moisture estimation based on optical and microwave remote sensing data[J]. Journal of Beijing Normal University (Natural Science), 2007,43(3):228-233.
Lei Z B, Meng Q Y, Tian S F, et al. Soil moisture retrieval study based on GF-3 and Landsat8 remote sensing data[J]. Journal of Geo-Information Science, 2019,21(12):1965-1976.
[54]
Zribi M, Dechambre M. A new empirical model to retrieve soil moisture and roughness from C-band Radar data[J]. Remote Sensing of Environment, 2003,84(1):42-52.
doi: 10.1016/S0034-4257(02)00069-X
[55]
Rahman M M, Moran M S, Thoma D P, et al. A derivation of roughness correlation length for parameterizing Radar backscatter models[J]. International Journal of Remote Sensing, 2007,28(18):3995-4012.
doi: 10.1080/01431160601075533
[56]
Zhu L, Walker J P, Ye N, et al. Roughness and vegetation change detection:A pre-processing for soil moisture retrieval from multi-temporal SAR imagery[J]. Remote Sensing of Environment, 2019,225:93-106.
doi: 10.1016/j.rse.2019.02.027
[57]
Santi E, Dabboor M, Pettinato S, et al. Combining machine learning and compact polarimetry for estimating soil moisture from C-band SAR data[J]. Remote Sensing, 2019,11(20):2451.
doi: 10.3390/rs11202451
Yu F, Zhao Y S, Li H T. Soil moisture retrieval based on GA-BP neural networks algorithm[J]. Journal of Infrared and Millimeter Waves, 2012,31(3):283-288.
doi: 10.3724/SP.J.1010.2012.00283
[59]
Santi E. Neural networks applications for the remote sensing of hydrological parameters[M]//Artificial Neural Networks—Models and Applications Book.TechOpen, 2016:309-334.
Jiang H, Yusufujiang R, Baihetinisha A, et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm[J]. Journal of Geo-Information Science, 2017,33(6):30-36.
[61]
Ma H, Liu S. The potential evaluation of multisource remote sensing data for extracting soil moisture based on the method of BP neural network[J]. Canadian Journal of Remote Sensing, 2016,42(2):117-124.
doi: 10.1080/07038992.2016.1160773
[62]
Getachew A, Tsegaye T, Berhan G, et al. Combined use of Sentinel-1 SAR and Landsat sensors products for residual soil moisture retrieval over agricultural fields in the upper Blue Nile Basin,Ethiopia[J]. Sensors, 2020,20(11):3282.
doi: 10.3390/s20113282
[63]
Notarnicola C, Angiulli M, Posa F. Soil moisture retrieval from remotely sensed data:Neural network approach Versus Bayesian method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(2):547-557.
doi: 10.1109/TGRS.2007.909951
[64]
Kolassa J, Reichle R H, Liu Q, et al. Estimating surface soil moisture from SMAP observations using a neural network technique[J]. Remote Sensing of Environment, 2018,204:43-59.
doi: 10.1016/j.rse.2017.10.045
pmid: 29290638