Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 286-298    DOI: 10.6046/zrzyyg.2021386
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于夜光遥感数据的西南地区多维贫困测度及时空演变分析
张琼艺1(), 李昆2, 雍志玮3, 熊俊楠1,4(), 程维明4, 肖坤洪5, 刘东丽6
1.西南石油大学土木工程与测绘学院,成都 610500
2.四川电力设计咨询有限责任公司,成都 610041
3.西南石油大学地球科学与技术学院,成都 610500
4.中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
5.四川省煤田测绘工程院,成都 610072
6.自然资源部第六测量队,成都 610500
The multidimensional measure and spatial-temporal evolution analysis of poverty in southwestern China based on nighttime light data
ZHANG Qiongyi1(), LI Kun2, YONG Zhiwei3, XIONG Junnan1,4(), CHENG Weiming4, XIAO Kunhong5, LIU Dongli6
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Sichuan Electric Power Design and Consulting Co. Ltd., Chengdu 610041, China
3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
4. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
5. Sichuan Province Coalfield Surverying and Mapping Engineering Institute, Chengdu 610072, China
6. The Sixth Topographic Survey Team of the Ministry of Natural Resources, Chengdu 610500, China
全文: PDF(8215 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

中国的区域性整体贫困问题在2020年已经解决,但相对贫困仍将长期存在。因此,对贫困地区进行长期的贫困测量和发展分析仍具有重要意义。但是传统的测度方式使用社会经济数据存在较大的限制。以中国西南4省(市)为研究区域,首先,建立了基于粒子群优化算法的反向传播(back propagation, BP)神经网络模型,构建了2000—2019年的长时间序列夜光(nighttime light, NTL)数据集; 然后,根据社会经济和地理数据,构建了反映县域贫困的多维贫困指数; 最后,将长时间序列NTL数据与多维贫困指数相结合,构建了贫困测度模型,输出基于NTL数据的多维贫困指数(nighttime light multidimensional poverty index, NLMPI)。同时,在NLMPI指数的基础上进行了县域贫困测度和时空动态分析。研究表明,在2000年NLMPI表明西南4省(市)多维贫困状况分化较为严重,但随国家扶贫工作的开展,极低和较低等级县域占比下降,中等县域占比提高; 在2000—2019年间,西南地区各县域的NLMPI具有正的空间自相关,Moran’s I指数呈现先降后升的趋势,这反映出在2000—2010年,贫困聚集现象有所减弱,而在之后进入了较为分散的脱贫攻坚阶段; 局部空间自相关的结果表明,中国西南地区的多维贫困模式正在改善,但不平衡; 结果反映在成渝、昆明和贵阳的高-高聚集,以及四川西北部和云南西部的低-低聚集的空间模式。本研究强调了夜光遥感数据在区域尺度贫困研究中的应用能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琼艺
李昆
雍志玮
熊俊楠
程维明
肖坤洪
刘东丽
关键词 夜光数据多维贫困贫困测度时空演变    
Abstract

The overall regional poverty in China was eliminated in 2020, but the relative poverty in the country will still exist for a long time. Therefore, it is necessary to conduct a long-term measurement and development analysis of poverty in poverty-stricken areas. However, conventional measurement methods based on socio-economic data have severe limitations. With four provinces (municipalities) in southwestern China as a case study, this study built a back propagation (BP) neural network model based on the particle swarm optimization algorithm and a nighttime light (NTL) dataset of long time series from 2000 to 2019 first. Then, this study constructed the multi-dimensional poverty indices based on socio-economic and geographical data to reflect the poverty in counties. Finally, this study established a poverty measure model by combining the long-time-series NTL data with the multidimensional poverty indices and produced the nighttime light multidimensional poverty index (NLMPI). Based on the NLMPI, the measure and spatial-temporal evolution analysis of poverty in counties were carried out. The study results are as follows. The NLMPI indicates that the four provinces (municipalities) in southwestern China had significantly differentiated multidimensional poverty in 2000. However, the proportion of counties at extremely low and low levels decreased while that of moderate-level counties increased owing to the national poverty alleviation efforts. From 2000 to 2019, the NLMPI of counties in southwestern China showed a positive spatial autocorrelation and the Moran’s I index showed a downward and then an upward trend. These results indicate that poverty aggregation weakened from 2000 to 2010 and poverty alleviation dispersed thereafter in the four provinces (municipalities) in southwestern China. The local spatial autocorrelation results indicate that the multi-dimensional poverty pattern in southwestern China was alleviated but unbalanced. This pattern was reflected in the high NLMPI values surrounded by high NLMPI values (the H-H aggregation type) in Chengdu-Chongqing, Kunming, and Guiyang and in the low NLMPI values surrounded by low NLMPI values (the L-L aggregation type) in northwestern Sichuan and western Yunnan. This study highlights the application of NTL data in research on regional poverty.

Key wordsnighttime light data    multi-dimensional poverty    poverty measure    spatial-temporal evolution
收稿日期: 2021-11-16      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:四川省科技厅重点研发项目“基于多源遥感数据的西藏农业干旱监测关键技术研究与应用”(2021YFQ0042);国家重点研发计划课题“村寨地质灾害智能监测与治理技术研发及应用示范”(2020YFD1100701);西藏自治区科技计划项目“基于立体遥感观测网的西藏生态环境监测技术体系建设及示范应用”(XZ201901-GA-07)
通讯作者: 熊俊楠(1981-),男,博士,教授,主要从事环境与灾害遥感及地理信息系统理论研究。Email: neu_xjn@163.com
作者简介: 张琼艺(1993-),女,硕士,主要从事环境与灾害遥感研究。Email: 515755332@qq.com
引用本文:   
张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析[J]. 自然资源遥感, 2022, 34(4): 286-298.
ZHANG Qiongyi, LI Kun, YONG Zhiwei, XIONG Junnan, CHENG Weiming, XIAO Kunhong, LIU Dongli. The multidimensional measure and spatial-temporal evolution analysis of poverty in southwestern China based on nighttime light data. Remote Sensing for Natural Resources, 2022, 34(4): 286-298.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021386      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/286
Fig.1  研究区位置示意图
Fig.2  2019年研究区人口和GDP分布
数据名称 数据
格式
数据周期 空间
分辨率
来源
DMSP-OLS .png 2000—2013年 30弧秒 科罗拉多矿业大学地球观测小组
NPP-VIIRS .png 2012—2019年 15弧秒 科罗拉多矿业大学地球观测小组
县级行政区划 .shp 2015年 1:100万 资源环境科学与数据中心
统计数据 .csv 2000—2019年 各级统计局
SRTMDEM .png 90 m 地理空间数据云平台
国家贫困县名单 .csv 国家乡村振兴局
Tab.1  本文主要数据汇总
维度 指标 属性 权重分配
经济维度 人均GDP 0.130 8
农民人均纯收入 0.081 8
人均公共财政预算收入 0.153 2
社会维度 卫生机构数 0.094 1
每千人床位数 0.086 8
人均全社会固定资产投资 0.131 9
人均社会消费品零售总额 0.177 9
在校小学生比重 0.051 5
在校中学生比重 0.033 7
自然维度 坡度大于15°的面积比 0.036 0
平均海拔 0.021 6
Tab.2  多维贫困测度指标体系及权重
方面 编号 描述
集中特征 F1 县域内所有像素值的平均值
F2 县域内所有亮元像素值的平均值
分散程度 F3 县域内所有像素值的方差
F4 县域内所有像素值的标准差
F5 县域内所有像素值的离差平方和
分布特征 F6 县域内所有像素值的总和
F7 县域内的像素数
F8 县域内大于0的像素数
F9 县域内所有像素的最大值
F10 县域内所有像素的最小值
F11 县域内所有像素的值域
空间特征 F12 基于F3的县域局部自相关
Tab.3  区域夜光特征变量及描述
Fig.3  2019年重庆市MPI指数分布
Fig.4  重庆市各县区MPI指数
Fig.5  2019年重庆市12种灯光指数空间分布
编号 相关系数 编号 相关系数
F1 0.550 ** F7 -0.373 **
F2 0.594 ** F8 0.340 **
F3 0.307 ** F9 0.534 **
F4 0.409 ** F10 0.371 **
F5 0.372 ** F11 0.267 **
F6 0.604 ** F12 0.129 **
Tab.4  MPI和夜光特征变量的相关系数及显著性
Fig.6  西南地区NLMPI指数及国家级贫困县的分布
Fig.7  不同时期西南地区NLMPI指数
类型 2015年 2019年
国家划定
贫困县数
所占比例/% 国家划定
贫困县数
所占比例/%
极低 52 92.9 29 38.2
较低 109 60.6 15 9.0
中等 21 19.6 3 2.3
较高 5 6.7 0 0
极高 1 5.3 0 0
Tab.5  国家级贫困县在每一等级县域数量中所占数目及比例
Fig.8  西南地区不同时期各贫困等级县域数量比
Fig.9  2000—2019年西南地区平均NLMPI指数的时间变化特征
Fig.10  西南地区不同时期NLMPI指数变化趋势
Fig.11  2000—2019年西南地区的Morans’ I指数
Fig.12  2000—2019年西南地区各县域NLMPI指数的局部空间同相关分布状况
[1] Steele J E, Sundsøy P R, Pezzulo C, et al. Mapping poverty using mobile phone and satellite data[J]. Journal of the Royal Society Interface, 2017, 14(127):20160690.
doi: 10.1098/rsif.2016.0690
[2] 刘彦随, 周扬, 刘继来. 中国农村贫困化地域分异特征及其精准扶贫策略[J]. 中国科学院院刊, 2016, 31(3):269-278.
Liu Y S, Zhou Y, Liu J L. Regional differentiation characteristics of rural poverty and targeted poverty alleviation strategy in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(3):269-278.
[3] 周扬, 郭远智, 刘彦随. 中国县域贫困综合测度及2020年后减贫瞄准[J]. 地理学报, 2018, 73(8):1478-1493.
doi: 10.11821/dlxb201808007
Zhou Y, Guo Y Z, Liu Y S. Comprehensive measurement of county poverty and anti-poverty targeting after 2020 in China[J]. Acta Geographica Sinica, 2018, 73(8):1478-1493.
doi: 10.11821/dlxb201808007
[4] Amis P, Rakodi C. Urban poverty:Concepts,characteristics and policies[J]. Habitat International, 1995, 19(4):403-405.
doi: 10.1016/0197-3975(95)00036-F
[5] 胡为安. 基于合成NPP-VIIRS年度数据的中国贫困地区发展状况研究[D]. 赣州: 江西理工大学, 2020.
Hu W A. Research on the development situation of poor regions in China based on synthetic NPP-VIIRS annual data[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
[6] 王武林, 余翠婵, 曾献君, 等. 东南沿海县域贫困度演变特征及驱动因素研究——以福建省为例[J]. 地理科学进展, 2020, 39(11):1860-1873.
doi: 10.18306/dlkxjz.2020.11.007
Wang W L, Yu C C, Zeng X J, et al. Evolution characteristics and driving factors of county poverty degree in China’s southeast coastal areas:A case study of Fujian Province[J]. Progress in Geography, 2020, 39(11):1860-1873.
[7] 郭熙保, 罗知. 论贫困概念的演进[J]. 江西社会科学, 2005(11):38-43.
Guo X B, Luo Z. Evolution of the concept of poverty[J]. Jiangxi Social Sciences, 2005(11):38-43.
[8] 胡蝶. 基于机器学习的贫困等级分类[D]. 武汉: 华中师范大学, 2019.
Hu D. Classification of poverty levels based on machine learning[D]. Wuhan: Central China Normal University, 2019.
[9] Cheli B, Lemmi A. A totally fuzzy and relative approach to the multidimensional analysis of poverty[J]. Economic Notes, 1995, 24(1):115-134.
[10] Bourguignon F, Chakravarty S R. The measurement of multidimensional poverty[M]. Smgapore: Poverty,Social Exclusion and Stochastic Dominance. Springer, 2019:83-107.
[11] Lugo M, Maasoumi E. Multidimensional poverty measures from an information theory perspective[M]. Oxford Poverty and Human Development Initiative (OPHI), 2009.
[12] Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7-8):476-487.
doi: 10.1016/j.jpubeco.2010.11.006
[13] Noor A M, Alegana V A, Gething P W, et al. Using remotely sensed night-time light as a proxy for poverty in Africa[J]. Population Health Metrics, 2008, 6(1):5.
doi: 10.1186/1478-7954-6-5
[14] Smith B, Wills S. Left in the dark? Oil and rural poverty[J]. Journal of the Association of Environmental and Resource Economists, 2018, 5(4):865-904.
doi: 10.1086/698512
[15] Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data[J]. Computers and Geosciences, 2009, 35(8):1652-1660.
doi: 10.1016/j.cageo.2009.01.009
[16] Wang W, Cheng H, Zhang L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China[J]. Advances in Space Research, 2012, 49(8):1253-1264.
doi: 10.1016/j.asr.2012.01.025
[17] Li G, Chang L, Liu X, et al. Monitoring the spatiotemporal dynamics of poor counties in China:Implications for global sustainable development goals[J]. Journal of Cleaner Production, 2019, 227:392-404.
doi: 10.1016/j.jclepro.2019.04.135
[18] Han L, Zhang Q, Ma P, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124(3):517-528.
doi: 10.1007/s00704-015-1432-z
[19] Zhao J, Ji G, Yue Y, et al. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets[J]. Applied Energy, 2019, 235:612-624.
doi: 10.1016/j.apenergy.2018.09.180
[20] Sun Y, Zheng S, Wu Y, et al. Spatiotemporal variations of city-level carbon emissions in China during 2000—2017 using nighttime light data[J]. Remote Sensing, 2020, 12(18):2916.
doi: 10.3390/rs12182916
[21] Wu J, He S, Peng J, et al. Intercalibration of DMSP-OLS night-time light data by the invariant region method[J]. International Journal of Remote Sensing, 2013, 34(20):7356-7368.
doi: 10.1080/01431161.2013.820365
[22] Yue Y, Tian L, Yue Q, et al. Spatiotemporal variations in energy consumption and their influencing factors in China based on the integration of the DMSP-OLS and NPP-VIIRS nighttime light datasets[J]. Remote Sensing, 2020, 12(7):1151.
doi: 10.3390/rs12071151
[23] Wu Y, Jiang M, Chang Z, et al. Does China’s urban development satisfy Zipf’s law? A multiscale perspective from the NPP-VIIRS nighttime light data[J]. International Journal of Environmental Research and Public Health, 2020, 17(4):1460.
doi: 10.3390/ijerph17041460
[24] Li X, Zhou Y, Zhao M, et al. A harmonized global nighttime light dataset 1992—2018[J]. Scientific Data, 2020, 7(1):1-9.
doi: 10.1038/s41597-019-0340-y
[25] Elvidge C D, Ziskin D, Baugh K E, et al. A fifteen year record of global natural gas flaring derived from satellite data[J]. Energies, 2009, 2(3):595-622.
doi: 10.3390/en20300595
[26] Hall F G, Strebel D E, Nickeson J E, et al. Radiometric rectification:Toward a common radiometric response among multidate,multisensor images[J]. Remote Sensing of Environment, 1991, 35(1):11-27.
doi: 10.1016/0034-4257(91)90062-B
[27] Ma J, Guo J, Ahmad S, et al. Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light[J]. Remote Sensing, 2020, 12(6):937.
doi: 10.3390/rs12060937
[28] Jeswani R, Kulshrestha A, Gupta P K, et al. Evaluation of the consistency of DMSP-OLS and SNPP-VIIRS night-time light datasets[J]. J Geomat, 2019, 13:98-105.
[29] Gori M, Tesi A. On the problem of local minima in back propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(1):76-86.
doi: 10.1109/34.107014
[30] Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007, 185(2):1026-1037.
doi: 10.1016/j.amc.2006.07.025
[31] Wang Y, Wang B. Multidimensional poverty measure and analysis:A case study from Hechi City,China[J]. SpringerPlus, 2016, 5(1):642.
doi: 10.1186/s40064-016-2192-7
[32] Li C, Yang W, Tang Q, et al. Detection of multidimensional poverty using Luojia 1-01 nighttime light imagery[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(7):963-977.
doi: 10.1007/s12524-020-01126-3
[33] Alkire S, Foster J. Counting and multidimensional poverty measurement[J]. Journal of Public Economics, 2011, 95(7):476-487.
doi: 10.1016/j.jpubeco.2010.11.006
[34] Hu J, Zhang T, Xin X, et al. Income identification and long-term multidimensional poverty:An empirical analysis based on data from China household tracking survey[J]. On Economic Problems, 2019 (8):75-81,90.
[35] Yin J, Qiu Y, Zhang B. Identification of poverty areas by remote sensing and machine learning:A case study in Guizhou,Southwest China[J]. ISPRS Int ernational Jounra Geo-Inf ormation, 2021, 10(1):11.
[36] Yu B, Shi K, Hu Y, et al. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2017, 8(3):1217-1229.
doi: 10.1109/JSTARS.2015.2399416
[1] 赵安周, 张向蕊, 相恺政, 刘宪锋, 张靓涵. 基于夜间灯光和统计数据的黄土高原城镇化水平时空格局分析[J]. 自然资源遥感, 2023, 35(3): 253-263.
[2] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[3] 覃纹, 黄秋燕, 覃志豪, 刘剑洪, 韦高杨. 广西糖料蔗种植区干旱遥感时空分析[J]. 自然资源遥感, 2022, 34(2): 261-270.
[4] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[5] 布自强, 白林波, 张佳瑜. 基于夜光遥感的宁夏沿黄城市群时空演变[J]. 自然资源遥感, 2022, 34(1): 169-176.
[6] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[7] 屈辰阳, 张莉, 汪鸣泉, 王茂华. 基于NPP/VIIRS卫星夜光数据的新建高铁站所在县域的GDP估算模型[J]. 国土资源遥感, 2020, 32(2): 81-87.
[8] 张瑜, 赵晓丽, 左丽君, 张增祥, 徐进勇. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 国土资源遥感, 2019, 31(3): 132-139.
[9] 刘一霖, 张勤, 黄海军, 杨成生, 赵超英. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2): 144-151.
[10] 冯永玖, 韩震. 基于遥感和GIS的海岸带水域生态景观格局演变研究——以杭州湾北岸上海市段为例[J]. 国土资源遥感, 2011, 23(1): 123-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发