Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 90-98    DOI: 10.6046/zrzyyg.2022018
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于改进YOLOv4-tiny的无人机影像枯死树木检测算法
金远航(), 徐茂林(), 郑佳媛
辽宁科技大学土木工程学院,鞍山 114051
A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images
JIN Yuanhang(), XU Maolin(), ZHENG Jiayuan
School of Civil Engineering, Liaoning University of Science and Technology, Anshan 114051, China
全文: PDF(10609 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对目前枯死树木检测主要依赖人工实地勘察,容易受到森林地形限制、勘察效率低、易发生危险等问题,提出一种引进注意力机制及空间金字塔池化的YOLOv4-tiny枯死树木检测算法。首先,该方法在模型的Backbone部分后引入空间金字塔池化(spatial pyramid pooling,SPP)结构,融合局部和全局特征,丰富模型的特征表达能力; 其次,使用ELU替换模型中原激活函数LeakyReLU,使得激活函数单侧饱和,能够更好地收敛,提升模型鲁棒性; 最后,将注意力机制ECANet引入模型中,加强网络对图像中重要信息的学习,提升网络的性能。实验利用无人机采集辽南某风景区山林的树木影像,并使用不同模型对其中枯死树木进行检测。通过实验结果表明,改进算法检测精度达到93.25%,相比于YOLOv4-tiny,YOLOv4,SSD和文献[8]算法,精度分别提升9.58%,12.57%,10.54%和4.87%,能够较好地实现对于枯死树木的检测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金远航
徐茂林
郑佳媛
关键词 枯死树木YOLOv4-tiny注意力机制SPPELU激活函数    
Abstract

The current dead tree detection primarily relies on manual field surveys and, thus, is limited by forest topography, suffers a low detection efficiency, and is dangerous. Given these problems, this study proposed a YOLOv4-tiny dead tree detection algorithm based on the attention mechanism and spatial pyramid pooling (SPP) and improved the original detection model. First, the SPP structure was introduced after the Backbone part of the model to combine local and global features and enrich the feature representation capability of the model. Then, the original activation function LeakyReLU in the model was replaced with ELU, which made the activation function saturate unilaterally, thus improving the convergence and robustness of the model. Finally, the attention mechanism ECANet was introduced into the model to enhance the capacity of the network to learn important information in images, thus improving the performance of the network. The images of trees in a mountain forest of a scenic area in southern Liaoning were collected using an unmanned aerial vehicle (UAV). Then, dead trees in these images were detected using different models. The detection results show that the improved algorithm had a detection accuracy of 93.25%, which was improved by 9.58%, 12.57%, 10.54%, and 4.87% than that of the YOLOv4-tiny, YOLOv4, and SSD algorithms and an algorithm stated in literature [8], respectively, and achieved the effective detection of dead trees.

Key wordsdead tree    YOLOv4-tiny    attention mechanism    SPP    ELU activation function
收稿日期: 2022-01-12      出版日期: 2023-03-20
ZTFLH:  TP751  
基金资助:国家重点研发计划项目“金属非金属矿山重大灾害治灾机理及防控技术研究”(2016YFC0801600)
通讯作者: 徐茂林(1964-),男,硕士,教授,主要研究方向为摄影测量与遥感。Email: xml1964@163.com
作者简介: 金远航(1997-),男,硕士研究生,主要研究方向为深度学习、图像处理、摄影测量与遥感。Email: yhjin2@126.com
引用本文:   
金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022018      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/90
Fig.1  枯死树木检测技术流程图
Fig.2  固定尺寸输出的SPP结构
Fig.3  激活函数LeakyReLU与ELU对比
Fig.4  ECA注意力模块结构图
Fig.5  改进后YOLOv4-tiny结构
Fig.6  部分影像数据集
Fig.7  数据增强
模型 AP/% FPS
YOLOv4-tiny(SENet) 87.69 187.77
YOLOv4-tiny(CBAM) 88.04 176.84
YOLOv4-tiny(ECANet) 88.65 200.94
Tab.1  不同注意力机制检测结果
Fig.8  部分检测结果对比
激活函数 AP/% FPS
LeakyReLU 88.65 200.94
ELU 90.87 188.12
Tab.2  不同激活函数对比
模型 AP/% FPS
YOLOv4-tiny 90.87 188.12
YOLOv4-tiny(SPP) 93.25 182.63
Tab.3  2种模型检测结果对比
Fig.9  不同状态部分影像
状态 YOLOv4 SSD YOLOv4-tiny 本文算法
明亮 85.50 86.56 83.55 93.16
黑暗 88.80 95.91 86.23 94.32
Tab.4  4种模型对不同影像检测结果对比
Fig.10  模型训练时Loss变化趋势
模型 AP/% FPS
YOLOv4 82.71 47.45
SSD 80.68 110.37
YOLOv4-tiny 83.67 196.22
文献[8] 88.38 179.54
本文算法 93.25 182.63
Tab.5  4种模型对测试集检测结果对比
Batch Size AP/% FPS
2 90.36 170.23
4 92.65 175.29
8 92.33 177.46
16 93.25 182.63
32 93.36 174.38
64 91.80 178.73
Tab.6  不同Bactch Size对比
数量 AP/% FPS
1 000 75.65 177.40
2 000 78.08 164.18
3 000 82.60 175.40
4 000 84.42 174.73
5 000 86.59 174.26
6 000 89.21 175.12
7 000 91.98 175.39
8 000 93.36 174.38
Tab.7  不同数量数据集对比
[1] Kamińska A, Lisiewicz M, Stereńczak K, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
doi: 10.1016/j.rse.2018.10.005
[2] 毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-31,48.
Bi K, Li Y C, Ding X B, et al. Aerial photogrammetric technology of light small UAV:Status and trend of development[J]. Bulletin of Surveying and Mapping, 2015(3):27-31,48.
[3] 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18):1-12.
Wang P, Luo X W, Zhou Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18):1-12.
[4] Kamińska A, Lisiewicz M, K Stereńczak, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
doi: 10.1016/j.rse.2018.10.005
[5] Manandhar A, Hoegner L, Stilla U. Palm tree detection using circular autocorrelation of polar shape matrix[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, 3:465-472.
[6] 宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4):187-195.
Song Y N, Liu W P, Luo Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Scientia Silvae Sinicae, 2019, 55(4):187-195.
[7] Culman M, Delalieux S, Van Tricht K. Individual palm tree detection using deep learning on RGB imagery to support tree inventory[J]. Remote Sensing, 2020, 12(21):3476.
doi: 10.3390/rs12213476
[8] 王新彦, 吕峰, 易政洋. 基于深度学习的草坪树木检测方法研究[J]. 中国农机化学报, 2021, 42(7):136-141.
doi: 10.13733/j.jcam.issn.2095-5553.2021.07.20
Wang X Y, Lyu F, Yi Z Y. Research on lawn tree detection method based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7):136-141.
[9] Yu R, Luo Y, Zhou Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
doi: 10.1016/j.foreco.2021.119493
[10] 李海滨, 孙远, 张文明, 等. 基于YOLOv4-tiny的溜筒卸料煤尘检测方法[J]. 光电工程, 2021, 48(6):73-86.
Li H B, Sun Y, Zhang W M, et al. The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J]. Opto-Electronic Engineering, 2021, 48(6):73-86.
[11] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 17(9):198-215.
[12] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
[13] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135
[14] Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUS)[C]// Proceedings of the 4th International Conference on Learning Representations.ICLR, 2015:375-387.
[15] Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// CVF Conference on Computer Vision and Pattern Recognition.Seattle.IEEE, 2020:11531-11539.
[16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
[17] 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8):289-296.
doi: 10.3778/j.issn.1002-8331.2010-0192
Zhao J L, Zhang X Z, Dong H Y. Defect detection in transmission line based on scale-invariant feature pyramid networks[J]. Computer Engineering and Applications, 2022, 58(8):289-296.
doi: 10.3778/j.issn.1002-8331.2010-0192
[18] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
doi: 10.1007/s11263-009-0275-4
[19] 郭晓征, 姚云军, 贾坤, 等. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
doi: 10.6046/zrzyyg.2020397
Guo X Z, Yao Y J, Jia K, et al. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
doi: 10.6046/zrzyyg.2020397
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[3] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[4] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[5] 王艺儒, 王光辉, 杨化超, 刘慧杰. 基于生成对抗网络的遥感影像色彩一致性方法[J]. 自然资源遥感, 2022, 34(3): 65-72.
[6] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[7] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
[8] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[9] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发