Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 112-121    DOI: 10.6046/zrzyyg.2022163
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例
王珏1,2(), 郭振1,2(), 张志卫1,2, 徐文学1,2, 许昊2
1.自然资源部第一海洋研究所海岸带科学与海洋发展战略研究中心,青岛 266061
2.山东科技大学测绘与空间信息学院,青岛 266590
Construction of 3D landscape indices based on tilt photogrammetry: A case study of Tianheng Island in Shandong Province
WANG Jue1,2(), GUO Zhen1,2(), ZHANG Zhiwei1,2, XU Wenxue1,2, XU Hao2
1. Coastal Science and Marine Policy Center, First Institute of Oceanography, MNR, Qingdao 266061, China
2. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
全文: PDF(5820 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

景观指数是用以反映景观生态结构的组成和空间配置特征的定量指标。当前的景观指数体系普遍建立在对二维空间特性的表征上,评价结果难以准确反映真实三维景观系统的格局与构成,亟需一套描述海岛三维景观特征的指标体系及全过程评价方法。以山东省田横岛为例,基于无人机倾斜摄影测量点云,采用深度学习方法进行点云分类处理,构建了一套涵盖类型及景观尺度的6个三维景观基础指标用以定量化描述海岛三维景观特征,并建立了评价人类建设活动对海岛生态系统影响程度的建筑物景观指数。结果表明: 基于三维景观基础指标分析,田横岛建筑物三维体量较低且空间分布较为密集,高大植被类型具有较高的隔离度、规律性和空间聚集性,低矮的植被类型则多样性、紧凑性和连通性更大; 由于存在维度差异,三维景观指数比二维景观指数包含了更多的空间信息且受地面起伏影响程度较大; 同一景观类型下,形状指数TLSI对于高度变化更为灵敏(灵敏度指数为7.480); 同一景观指数下,建筑物类型较空间特征不规律的植被变化更大(灵敏度指数为5.861),且受建筑物设计特征的影响; 田横岛三维建筑物指数TBI为0.523,其大小随着建筑物的愈加密集、复杂而增加,较建筑物密度指数和空间拥堵指数可更好表达人工构筑物对海岛三维景观格局特征的影响程度。研究旨在为基于现代测绘技术支持下的三维景观指数构建、发展三维空间景观规划与管理评价体系提供方法学支撑和案例研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王珏
郭振
张志卫
徐文学
许昊
关键词 三维景观指数倾斜摄影测量建筑物景观指数海岛三维景观格局    
Abstract

Landscape indices are quantitative indices used to reflect the composition and spatial configuration of a landscape ecological structure. Current landscape index systems are generally constructed based on the characterization of 2D spatial characteristics, thus their evaluation results fail to accurately reflect the pattern and composition of a real 3D landscape system. Accordingly, there is an urgent need to develop an index system used to describe the 3D landscape characteristics of islands and a whole-process evaluation method. With Tianheng Island in Shandong Province as a case study and based on the point clouds of unmanned aerial vehicle (UAV) tilt photogrammetry, as well as the classification and processing of point clouds using the deep learning method, this study constructed six basic 3D landscape indices covering type and landscape scales to quantitatively describe the 3D landscape features of the island. Moreover, this study established the building landscape indices to evaluate the impacts of the construction activities of human beings on the island ecosystem. The results are as follows: ① As revealed by the analysis of basic 3D landscape indices, the buildings on Tianheng Island are characterized by small 3D volumes and dense spatial distribution. Furthermore, tall vegetation exhibits high isolation, regularity, and spatial aggregation, while low vegetation exhibits high diversity, compactness, and connectivity; ② Due to the difference in dimension, 3D landscape indices contain more spatial information than 2D landscape indices and are greatly affected by terrain undulation; ③ In the case of the same landscape type, the landscape shape index (TLSI) is more sensitive to the change in height (sensitivity index: 7.480). In the case of the same landscape index, the building type changes more greatly than vegetation with irregular spatial characteristics (sensitivity index: 5.861) and is influenced by the design characteristics of buildings; ④ Tianheng Island has a 3D building index (TBI) of 0.523, which increases with an increase in the density and complexity of buildings. Compared with building density and spatial congestion indices, TBI can better reflect the influence of artificial structures on the 3D landscape pattern of the island. This study aims to provide methodological support and a case study for the construction of 3D landscape indices based on modern surveying and mapping technology, as well as the planning of 3D spatial landscapes and the development of their management and evaluation system.

Key words3D landscape index    tilt photogrammetry    building landscape index    island    3D landscape pattern
收稿日期: 2022-04-22      出版日期: 2023-07-07
ZTFLH:  TP79  
  P901  
基金资助:时空演变规律及调控对策研究”(42171292);外交部亚洲专项资金项目“海洋空间规划产品研发”(WJ0922011);中国海洋发展基金会国际合作项目“中泰海洋空间规划合作研究”(B19029)
通讯作者: 郭 振(1983-),男,博士,副研究员,研究方向为海洋空间规划。Email: guozhen@fio.org.cn
作者简介: 王 珏(1998-),男,硕士研究生,研究方向为3S技术在海洋空间规划中的应用。Email: wangj98sd@outlook.com
引用本文:   
王珏, 郭振, 张志卫, 徐文学, 许昊. 基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例[J]. 自然资源遥感, 2023, 35(2): 112-121.
WANG Jue, GUO Zhen, ZHANG Zhiwei, XU Wenxue, XU Hao. Construction of 3D landscape indices based on tilt photogrammetry: A case study of Tianheng Island in Shandong Province. Remote Sensing for Natural Resources, 2023, 35(2): 112-121.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022163      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/112
Fig.1  田横岛地理位置示意图
Fig.2  田横岛三维透视图
Fig.3  田横岛局部三维透视图
Fig.4  田横岛土地利用类型
Fig.5  三维景观指数构建技术流程
Fig.6  田横岛DSM
Fig.7  田横岛点云分类
景观尺度 指数名称 计算公式 公式说明
类型 三维斑块密度TPD T P D = N i V i   描述单位体积上的斑块数,是描述景观破碎化的重要基础指标,表示三维景观内的空间异质性和均匀性
三维形状指数TLSI T L S I = 0.25 S i L V i V i   描述斑块形状与相同面积的规则圆形或正方形之间的偏差,测量其形状复杂程度
三维斑块占比指数TPLAND T P L A N D = S i E ×100% 描述各景观类别在海岛区域景观格局中的比重,量化了各斑块类型在景观中的比例丰度
三维最大斑块指数TLPI T L P I = V m a x V ×100% 描述各类景观中最大斑块所占该类景观的体积之比,有助于确定景观的优势类型,其大小决定着景观的丰富度或地物占比情况
景观 斑块占比 P i P i = V i V i类斑块所占体积比,反映斑块类型(类)占景观的比例,是景观多样性统计中的基础
三维香农多样性指数TSHDI T S H D I = - i = 1 m ( P i l n P i ) 减去所有斑块类型中各斑块类型的丰度比例乘以该比例的总和,用以表示海岛区域内不同斑块类型的多少,即丰富度问题
三维香农均匀度指数TSHEI T S H E I = - l n m i = 1 m ( P i l n P i ) 香农多样性指数除以给定景观丰度下的最大可能多样性,TSHEI=0表明景观仅由一种斑块组成,无多样性; TSHEI=1表明各斑块类型均匀分布,有最大多样性
其他 BCR B C R = E b V b 建筑物表面积和建筑物体积之间的量度
MBSI M B S I = S b h 建筑物面积和建筑物高度比值
PR P R = V b V 区域内的地上建筑物总面积与净用地面积的比率
TBI T B I = B C R + 10 3 / M B S I + P R 描述景观尺度内建筑物空间分布格局对原有空间的影响程度
BVD B V D = p = 1 k S p - H p S 用于量化建筑物密度程度的指数,其值高度依赖于岛屿的总面积
SCD S C D = p = 1 k V p A m a x { H p } 所有建筑物的体积累加值占研究区体积的百分比,反映了三维空间中建筑物的拥堵
Tab.1  三维景观指数公式及说明
景观
尺度
景观指数 低等高
度植被
中等高
度植被
高等高
度植被
建筑物
类型 TPD 9.334 6.121 13.796 1.345
TLSI 21.409 25.061 54.887 37.764
TLPI 8.360 3.296 1.074 0.016
TPLAND 0.355 0.275 0.116 0.037
景观尺度 景观指数 海岛
景观 TSHDI 0.732
TSHEI 0.614
TBI 0.523
Tab.2  不同尺度指数计算结果
景观类型/指数 维度 PD/TPD LSI/TLSI LPI/TLPI PLAND/TPLAND SHDI/TSHDI SHEI/TSHEI GSC
低等高度植被 二维 5.467 7.342 6.022 0.237 1.877
三维 9.334 21.409 8.360 0.355
中等高度植被 二维 7.870 6.521 3.115 0.178 1.806
三维 6.121 25.061 3.296 0.275
高等高度植被 二维 4.283 8.639 0.840 0.384 2.789
三维 13.796 54.887 1.074 0.116
建筑物 二维 0.247 2.243 0.112 0.123 5.681
三维 1.345 37.764 0.016 0.037
海岛尺度 二维 0.568 0.663
三维 0.732 0.614
ESC 2.788 7.487 0.967 0.911 1.289 0.926
Tab.3  二维、三维指数计算结果对比
Fig.8  情景模型概念图
Fig.9  情景分析结果
[1] Díaz-Varela E, Roces-Díaz J V, Álvarez-ÁLlvarez P. Detection of landscape heterogeneity at multiple scales: Use of the quadratic entropy index[J]. Landscape and Urban Planning, 2016, 153:149-159.
doi: 10.1016/j.landurbplan.2016.05.004
[2] Liu M, Nijhuis S. Mapping landscape spaces:Methods for understanding spatial-visual characteristics in landscape design[J]. Environmental Impact Assessment Review, 2020, 82:106376.
doi: 10.1016/j.eiar.2020.106376
[3] Medeiros A, Fernandes C, Gonalves J F, et al. Research trends on integrative landscape assessment using indicators:A systematic review[J]. Ecological Indicators, 2021, 129:107815.
doi: 10.1016/j.ecolind.2021.107815
[4] 李鑫, 欧名豪, 马贤磊. 基于景观指数的细碎化对耕地利用效率影响研究——以扬州市里下河区域为例[J]. 自然资源学报, 2011, 26(10):1758-1767.
Li X, Ou M H, Ma X L. Analysis on impact of fragmentation based on landscape index to cultivated land use efficiency:A case on Lixiahe District in Yangzhou City[J]. Journal of Natural Resources, 2011, 26(10):1758-1767.
[5] 陈康林, 龚建周, 刘彦随, 等. 近35 a来广州城市绿色空间及破碎化时空分异[J]. 自然资源学报, 2016, 31(7):1100-1113.
doi: 10.11849/zrzyxb.20150869
Chen K L, Gong J Z, Liu Y S, et al. The spatial-temporal differentiation of green space and its fragmentation during the past thirty-five years in Guangzhou[J]. Journal of Natural Resources, 2016, 31(7):1100-1113.
[6] Chen J K, Zhen W F, Jin S G, et al. Separate and combined impacts of building and tree on urban thermal environment from two-and three-dimensional perspectives[J]. Building and Environment, 2021, 194:107650.
doi: 10.1016/j.buildenv.2021.107650
[7] 张秦瑞, 赵良军, 林国军, 等. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1):230-237.doi:10.6046/zrzyyg.2021058.
doi: 10.6046/zrzyyg.2021058
Zhang Q R, Zhao L J, Lin G J, et al. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1):230-237.doi:10.6046/zrzyyg.2021058.
doi: 10.6046/zrzyyg.2021058
[8] Gao S, Sun H, Zhao L, et al. Dynamic assessment of island ecological environment sustainability under urbanization based on rough set,synthetic index and catastrophe progression analysis theories[J]. Ocean and Coastal Management, 2019, 178:104790.
doi: 10.1016/j.ocecoaman.2019.04.017
[9] Xie Z, Li X, Jiang D, et al. Threshold of island anthropogenic disturbance based on ecological vulnerability assessment:A case study of Zhujiajian Island[J]. Ocean and Coastal Management, 2019, 167:127-136.
doi: 10.1016/j.ocecoaman.2018.10.014
[10] 池源, 石洪华, 孙景宽, 等. 城镇化背景下海岛资源环境承载力评估[J]. 自然资源学报, 2017, 32(8):1374-1384.
doi: 10.11849/zrzyxb.20160753
Chi Y, Shi H H, Sun J K, et al. Evaluation on island resources and environment carrying capacity under the background of urbanization[J]. Journal of Natural Resources, 2017, 32(8):1374-1384.
doi: 10.11849/zrzyxb.20160753
[11] 田义超, 黄鹄, 张强, 等. 基于蜂巢格网的北部湾典型海岛景观生态风险空间异质性研究[J]. 海洋环境科学, 2021, 40(4):527-534,41.
Tian Y C, Huang H, Zhang Q, et al. Spatial heterogeneity of landscape ecological risk of typical islands in Beibu Gulf based on honeycomb grid[J]. Marine Environmental Science, 2021, 40(4):527-534,41.
[12] 江娜, 陈超, 韩海丰. 海岸带地类统计模型中DEM空间尺度优选方法[J]. 自然资源遥感, 2022, 34(1):34-42.doi:10.6046/zrzyyg.2022005.
doi: 10.6046/zrzyyg.2022005
Jiang N, Chen C, Han H F. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1):34-42.doi:10.6046/zrzyyg.2022005.
doi: 10.6046/zrzyyg.2022005
[13] Mcgarigal K, Compton B W, Plunkett E B, et al. A landscape index of ecological integrity to inform landscape conservation[J]. Landscape Ecology, 2018, 33:1029-1048.
doi: 10.1007/s10980-018-0653-9
[14] 张志明, 罗亲普, 王文礼, 等. 2D与3D景观指数测定山区植被景观格局变化对比分析[J]. 生态学报, 2010, 30(21):5886-5893.
Zhang Z M, Luo Q P, Wang W L, et al. A comparison of 2D and 3D landscape metrics for vegetation patterns change quantification in mountainous areas[J]. Acta Ecologica Sinica, 2010, 30(21):5886-5893.
[15] Long X, Yu H, Sun M, et al. Sustainability evaluation based on the three-dimensional ecological footprint and human development index:A case study on the four island regions in China[J]. Journal of Environmental Management, 2020, 265:110509.
doi: 10.1016/j.jenvman.2020.110509
[16] Hu Y, Dai Z, Guldmann J M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons:A boosted regression tree approach[J]. Journal of Environmental Management, 2020, 266:110424.
doi: 10.1016/j.jenvman.2020.110424
[17] Yu S, Chen Z, Yu B, et al. Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable extreme gradient boosting tree:A case study of Shanghai,China[J]. Science of the Total Environment, 2020, 725:138429.
[18] 宋仁波, 朱瑜馨, 郭仁杰, 等. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1):93-105.doi:10.6046/zrzyyg.2021039.
doi: 10.6046/zrzyyg.2021039
Song R B, Zhu Y X, Guo R J, et al. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1):93-105.doi:10.6046/zrzyyg.2021039.
doi: 10.6046/zrzyyg.2021039
[19] Liu Y, Wang Z P, Liu X, et al. Complexity of the relationship between 2D/3D urban morphology and the land surface temperature:A multiscale perspective[J]. Environmental Science and Pollution Research International, 2021, 28(47):66804-66818.
doi: 10.1007/s11356-021-15177-7 pmid: 34240301
[20] Xu Y, Liu M, Hu Y, et al. Analysis of three-dimensional space expansion characteristics in old industrial area renewal using GIS and barista:A case study of Tiexi District,Shenyang,China[J]. Sustainability, 2019, 11(7):1860.
doi: 10.3390/su11071860
[21] 孙宏战. 基于体素模型和点云数据的精细三维景观格局分析[D]. 长春: 吉林大学, 2021.
Sun H Z. A voxel-based fine-scale 3D landscape pattern analysis using point clouds[D]. Changchun: Jilin University, 2021.
[22] 宇超群, 刘小宇. 基于TerraSolid的平原地区点云数据滤波方法[J] .测绘与空间地理信息, 2017, 40(6):181-183.
Yu C Q, Liu X Y. A filtering point cloud data way on plain region based on TerraSolid[J]. Geomatics and Spatial Information Technology, 2017, 40(6):181-183.
[23] 魏金龙, 李明阳, 赵邑晨, 等. 基于稀疏型机载激光雷达数据的风景林参数估测[J]. 西北林学院学报, 2021, 36(2):164-171.
Wei J L, Li M Y, Zhao Y C, et al. Estimation of the parameters of scenic forests using sparse airborne LiDAR data[J]. Journal of Northwest Forestry University, 2021, 36(2):164-171.
[24] 闫钧华, 苏恺, 苏荣华, 等. 基于地物信息的高光谱遥感图像分类方法[J]. 宇航计测技术, 2021, 41(4):38-44.
Yan J H, Su K, Su R H, et al. Classification method of hyperspectral remote sensing image based on feature information[J]. Journal of Astronautic Metrology and Measurement, 2021, 41(4):38-44.
[25] 吴未, 范诗薇, 许丽萍, 等. 无锡市景观指数的粒度效应研究[J]. 自然资源学报, 2016, 31(3):413-424.
Wu W, Fan S W, Xu L P, et al. Grain size effect of landscape metrics in Wuxi City[J]. Journal of Natural Resources, 2016, 31(3):413-424.
doi: 10.11849/zrzyxb.20150303
[26] 鲁冬冬, 邹进贵. 多分类器组合的LiDAR点云分类[J/OL]. 测绘地理信息:1-7[2022-04-20].https://doi.org/10.14188/j.2095-6045.2020445.
Lu D D, Zou J G. Multi-classifier combined method for LiDAR point cloud classification[J/OL]. Journal of Geomatics:1-7[2022-04-20].https://doi.org/10.14188/j.2095-6045.2020445.
[27] 鄢文苗, 任东, 黄应平, 等. 基于SVM土壤重金属污染评价的训练数据集构建[J]. 武汉大学学报(理学版), 2019, 65(3):316-322.
Yan W M, Ren D, Huang Y P, et al. Training dataset construction for SVM soil heavy metal pollution assessment[J]. Journal of Wuhan University (Natural Science Edition), 2019, 65(3):316-322.
[28] 陈雪莹, 高雪娇, 许嘉巍, 等. 长白山风灾景观30年格局变化过程分析[J]. 生态学报, 2022, 42(4):1327-1339.
Chen X Y, Gao X J, Xu J W, et al. Analysis of the pattern change process of Changbai Mountain wind-damaged landscape in the past thirty years[J]. Acta Ecologica Sinica, 2022, 42(4):1327-1339.
[29] Pérez G, Escolà A, Rosell-Polo J R, et al. 3D characterization of a Boston Ivy double-skin green building facade using a LiDAR system[J]. Building and Environment, 2021, 206:108320.
doi: 10.1016/j.buildenv.2021.108320
[30] Chen Z, Xu B, Devereux B. Urban landscape pattern analysis based on 3D landscape models[J]. Applied Geography, 2014, 55:82-91.
doi: 10.1016/j.apgeog.2014.09.006
[31] Bonczak B, Kontokosta C E. Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data[J]. Computers,Environment and Urban Systems, 2019, 73:126-142.
doi: 10.1016/j.compenvurbsys.2018.09.004
[1] 毕卫华, 赵星涛, 杨化超, 卞和方, 张秋昭. 基于智能手机的无人机低空倾斜摄影测量系统及其应用研究[J]. 国土资源遥感, 2021, 33(2): 248-255.
[2] 余忠迪, 李辉, 巴芳, 王朝阳. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2): 67-72.
[3] 孙超, 刘永学, 李满春, 陈振杰, 赵赛帅. 近35年来热带风暴对我国南海岛礁的影响分析[J]. 国土资源遥感, 2014, 26(3): 135-140.
[4] 栗敏光, 李英成, 薛艳丽, 叶冬梅. 多源多时相遥感数据面向对象海岛识别方法探讨[J]. 国土资源遥感, 2010, 22(1): 65-68.
[5] 陈凌云, 胡自宁, 黎广钊, 钟仕全, 石剑龙. 遥感技术在广西海岛调查中的应用[J]. 国土资源遥感, 2005, 17(4): 78-81.
[6] 党福星, 丁谦. 多光谱浅海水深提取方法研究[J]. 国土资源遥感, 2001, 13(4): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发