Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 230-240    DOI: 10.6046/zrzyyg.2022181
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
郴州市郴江河流域水质与土地利用关联的空间异质性分析
周石松1(), 汤玉奇1,2(), 程宇翔1, 邹滨1,2, 冯徽徽1,2
1.中南大学地球科学与信息物理学院,长沙 410083
2.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙 410083
Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City
ZHOU Shisong1(), TANG Yuqi1,2(), CHENG Yuxiang1, ZOU Bin1,2, FENG Huihui1,2
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China
全文: PDF(4928 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究郴州市郴江河流域水质与土地利用关联的空间异质性特征,采集了2021年9月流域水质与高分遥感数据; 通过不同类型、不同尺度的流域缓冲区划分,计算土地利用组分及各地类斑块形状、尺寸及分布等景观配置; 利用单因子、多因子相关性分析,进行区域土地利用对水质的空间异质性影响分析。结果表明: ①在水质与土地利用单因子空间异质性关联分析中,圆形缓冲区的普适性优于河岸缓冲区,而河岸缓冲区在分析建筑用地占比对各水质参数的影响方面起补充作用。在多因子空间异质性关联分析中,河岸缓冲区土地利用对水质参数的解释率普遍高于圆形缓冲区,圆形缓冲区土地利用对水质参数的总解释率最大值出现在半径700 m尺度。②不同土地利用组分对水质的影响不同,耕草地、林地、水域面积占比与水质呈正相关关系,建筑物、裸地呈负相关关系,其中耕草地与建筑用地对水质影响最大; 在进行土地利用规划时,要考虑到土地利用组分的影响,合理分配人工地物和自然地物面积占比。③不同土地利用景观配置对水质影响不同。其中反映斑块形状与尺寸的景观形状指数(landscape shape index,LSI)、最大斑块指数(largest patch index,LPI)对水质存在负面影响,反映斑块分布的散布与并列指数(interspersion and juxtaposition index,IJI)和水体氨氮(ammonia nitrogen,NH3-N)含量在小尺度内呈负相关。在进行土地利用规划时更要考虑到景观配置的合理性,例如要控制缓冲区内优势地类斑块大小。研究结论找出了最能影响水质的缓冲区大小,揭示了最能解释郴江河水质的土地利用组分及其景观配置,为郴江河水质恶化的科学治理措施提供选择依据,对水环境保护有一定意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周石松
汤玉奇
程宇翔
邹滨
冯徽徽
关键词 流域水质土地利用空间异质性分析郴州市郴江河    
Abstract

This study investigated the spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin of Chenzhou City using the water quality and high-resolution remote sensing data of the river basin in September 2021. Based on the division of river basin buffer zones by different types and scales, this study calculated land use components and their landscape configurations, such as the shape, size, and distribution of patches. Then, this study analyzed the spatial heterogeneity effect of regional land use on water quality through single-factor and multi-factor correlation analyses. The results are as follows: ① In the single-factor correlation analysis of spatial heterogeneity between water quality and land use, circular buffer zones showed higher universality than riparian buffer zones, which played a complementary role in analyzing the effect of built-up land occupation on water quality parameters. In the multi-factor correlation analysis of spatial heterogeneity, the land use presented generally higher interpretation rates for water quality parameters in riparian buffer zones than in circular buffer zones, with the maximum total interpretation rate of land use for water quality parameters in circular buffer zones occurring on a scale of a radius of 700 m. ② Different land use components had different effects on water quality. The proportions of cultivated land, grassland, forest land, and water areas correlated positively with water quality, while those of building land and bare land correlated negatively with water quality. Among them, cultivated land, grassland, and building land had the most significant effects on water quality. Land use planning should consider the influence of land use components and reasonably allocate the proportions of artificial and natural features. ③ Different landscape configurations had different effects on water quality. The landscape shape index (LSI) and the largest patch index (LPI), which reflect the shape and size of patches, had negative effects on water quality. Furthermore, the interspersion and juxtaposition index (IJI), which reflects the distribution of patches, correlated negatively with the ammonia nitrogen (NH3-N) content in water bodies on a small scale. Land use planning should consider the rationality of landscape configurations. For example, it is necessary to control the sizes of dominant land patches in the buffer zones. This study identified the buffer zone size that influences water quality the most and the land use components and landscape configurations that can explain the water quality of the Chenjiang River the best. Therefore, this study provides a basis for selecting scientific control measures for the deterioration of water quality in the Chenjiang River, showing certain significance for water environment protection.

Key wordsriver basin water quality    land use    spatial heterogeneity analysis    Chenjiang River in Chenzhou City
收稿日期: 2022-05-09      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“多时相视角差异下的高分辨率遥感影像城市建筑物变换检测研究”(41971313);湖南省自然科学基金项目“基于全卷积网络弱监督学习与知识迁移的飞机目标检测研究”(2019JJ40372);湖南省重点研发计划项目“黑臭水体水质监控检测及综合治理关键技术”(2019SK2112)
通讯作者: 汤玉奇(1986-),女,副教授,主要从事遥感影像处理的研究与教学工作。Email: yqtang@csu.edu.cn
作者简介: 周石松(1997-),男,硕士研究生,主要从事自然资源遥感方面研究。Email: 690426598@qq.com
引用本文:   
周石松, 汤玉奇, 程宇翔, 邹滨, 冯徽徽. 郴州市郴江河流域水质与土地利用关联的空间异质性分析[J]. 自然资源遥感, 2023, 35(3): 230-240.
ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022181      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/230
Fig.1  郴州市郴江河流域水体采样点分布
Fig.2  流域水质与土地利用关联的空间异质性分析流程
项目/
分类
I类
(源头水)
II类(生
活饮用水)
III类(渔
业用水)
Ⅳ类(工
业用水)
Ⅴ类(农
业用水)
TN 0.20 0.500 1.00 1.5 2.0
TP 0.01 0.025 0.05 0.1 0.2
NH3-N 0.15 0.500 1.00 1.5 2.0
COD 15.00 15.000 20.00 30.0 40.0
Tab.1  水质项目含量分类标准
Fig.3  流域采样点水质参数空间分布
Fig.4  郴江河流域各空间尺度土地利用类型占比
水质参数 缓冲区
类型
缓冲区
尺度/m
土地利用组分 土地利用景观配置
林地 建筑用地 裸地 水域 耕草地 LSI IJI LPI
TN 圆形缓冲区 100 0.64*
200 0.56*
300
500
700 0.56* -0.55*
1 000 -0.52* 0.61* -0.60* 0.55* 0.58*
1 500 -0.51* 0.60* -0.64* 0.66* 0.59*
河岸缓冲区 100 0.66*
200 0.65* -0.55* 0.64*
TP 圆形缓冲区 100 -0.51* 0.65*
200 -0.50* 0.70**
300
500
700
1 000 0.58* -0.55* 0.53* 0.51*
1 500 -0.56* 0.69** 0.55*
河岸缓冲区 100 0.68**
200 0.61* 0.61*
NH3-N 圆形缓冲区 100 -0.53* -0.53*
200 -0.63*
300 0.61* -0.54*
500
700
1 000 0.51*
1 500
河岸缓冲区 100 -0.67**
200 0.63* -0.56*
COD 圆形缓冲区 100 0.82** -0.73** 0.71**
200 0.79** -0.86** 0.52*
300 0.73** -0.84** 0.59*
500 0.67** -0.87**
700 0.67** -0.87** 0.58*
1 000 -0.53* 0.72** -0.84** 0.67** 0.71**
1 500 -0.57* 0.74** -0.83** 0.69** 0.56*
河岸缓冲区 100 0.84** -0.85** 0.67**
200 0.79** -0.88** 0.63*
Tab.2  水质参数与土地利用单因子相关性分析结果
缓冲区
类型
缓冲区
尺度/m
土地利用组分 土地利用景观配置 总解释率
林地 建筑用地 裸地 水域 耕草地 LSI IJI LPI
圆形缓冲区 100 0.24* 0.39** 0.62*
200 0.25* 0.21* 0.27* 0.71**
300 0.23* 0.22* 0.24* 0.63*
500 0.24* 0.28* 0.69*
700 0.31* 0.36* 0.75**
1 000 0.37** 0.39** 0.31* 0.63*
1 500 0.36** 0.43** 0.25* 0.35* 0.28* 0.68*
河岸缓冲区 100 0.46** 0.31* 0.27* 0.76**
200 0.42** 0.37* 0.39** 0.75**
Tab.3  水质与土地利用多因子相关性分析结果
Fig.5  郴江河域RDA结果排序
[1] Franco E G. The global risks report 2020[J/OL]. World Economic Forum (2020-01-28)[2022-05-09]. https://www.weforum.org/reports/the-global-risks-report-2020.
[2] HHC S. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 12(6):956-963.
[3] 吕志强, 庆旭瑶, 任玉芬, 等. 山地城市河流土地利用结构对水质的影响——以重庆市为例[J]. 湖泊科学, 2016, 28(2):319-327.
Lyu Z Q, Qing X Y, Ren Y F, et al. Effects of land use pattern on water quality in mountainous city:A case study of Chongqing City[J]. Journal of Lake Sciences, 2016, 28(2):319-327.
doi: 10.18307/2016.0211
[4] 刘丽娟, 李小玉, 何兴元. 流域尺度上的景观格局与河流水质关系研究进展[J]. 生态学报, 2011, 31(19):5460-5465.
Liu L J, Li X Y, He X Y. Advances in the studying of the relationship between landscape pattern and river water quality at the watershed scale[J]. Acta Ecologica Sinica, 2011, 31(19):5460-5465.
[5] 王杰, 李鹏, 高海东, 等. 丹江上游土地利用/景观指数与水质关系初探[J]. 水土保持研究, 2018, 25(6):383-389.
Wang J, Li P, Gao H D, et al. A preliminary study on the relationship between land use/landscape index and water quality in the upper reaches of Danjiang River[J]. Research of Soil and Water Conservation, 2018, 25(6):383-389.
[6] Mitchell M G E, Bennett E M, Gonzalez A. Linking landscape connectivity and ecosystem service provision:Current knowledge and research gaps[J]. Ecosystems, 2013, 16(5):894-908.
doi: 10.1007/s10021-013-9647-2
[7] 张以晖. 黄浦江河岸带土地利用变迁及其水质响应关系研究[D]. 上海: 华东师范大学, 2015.
Zhang Y H. Study on land use change and water quality response relationship in the bank zone of Huangpu River[D]. Shanghai: East China Normal University, 2015.
[8] 赵鹏, 夏北成, 秦建桥, 等. 流域景观格局与河流水质的多变量相关分析[J]. 生态学报, 2012, 32(8):2331-2341.
Zhao P, Xia B C, Qin J Q, et al. Multivariate correlation analysis between watershed landscape pattern and river water quality[J]. Acta Ecologica Sinica, 2012, 32(8):2331-2341.
doi: 10.5846/stxb
[9] 张志敏, 杜景龙, 陈德超, 等. 典型网状河网区域土地利用和景观格局特征对地表季节水质的影响——以江苏省溧阳市为例[J]. 湖泊科学, 2022, 34(5):1524-1539.
Zhang Z M, Du J L, Cheng D C, et al. Effects of land use and landscape pattern characteristics on surface seasonal water quality in typical networked river networks:A case study of Liyang City,Jiangsu Province[J]. Journal of Lake Science, 2022, 34(5):1524-1539.
[10] Tu J. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression[J]. Applied Geography, 2011, 31(1):376-392.
doi: 10.1016/j.apgeog.2010.08.001
[11] 李艳利, 徐宗学, 李艳粉. 浑太河流域多尺度土地利用/景观格局与水质响应关系初步分析[J]. 地球与环境, 2012, 40(4):573-583.
Li Y L, Xu Z X, Li Y F. A preliminary analysis of the relationship between multi-scale land use/landscape pattern and water quality response in Huntai River basin[J]. Earth and Environment, 2012, 40(4):573-583.
[12] 陆君, 刘亚风, 黄洪辉, 等. 黄山市太平湖流域土地利用结构与河流水质相关性分析[J]. 复旦学报(自然科学版), 2014, 53(6):731-736,746.
Lu J, Liu Y F, Huang H H, et al. Correlation analysis between land use structure and river water quality in Taiping Lake basin,Huangshan City[J]. Fudan Journal (Natural Science Edition), 2014, 53(6):731-736,746.
[13] 焦胜, 杨娜, 彭楷, 等. 沩水流域土地景观格局对河流水质的影响[J]. 地理研究, 2014, 33(12):2263-2274.
doi: 10.11821/dlyj201412005
Jiao S, Yang N, Peng K, et al. Effects of land landscape pattern on river water quality in Shuishui basin[J]. Geographical Research, 2014, 33(12):2263-2274.
[14] Li S, Xia X, Tan X, et al. Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han River basin,China[J]. PLoS One, 2013, 8(1):e53163.
doi: 10.1371/journal.pone.0053163
[15] 汪昱昆, 程锐辉, 曾鹏, 等. 上海地区河网水质空间分异及对河岸带土地利用的响应[J]. 生态与农村环境学报, 2019, 35(7):925-932.
Wang Y K, Cheng R H, Zeng P, et al. Spatial differentiation of water quality in river network in Shanghai and its response to land use in the riparian zone[J]. Journal of Ecology and Rural Enviroment, 2019, 35(7):925-932.
[16] 蔡宏, 何政伟, 安艳玲, 等. 基于遥感和GIS的赤水河水质对流域土地利用的响应研究[J]. 长江流域资源与环境, 2015, 24(2):286-291.
Cai H, He Z W, An Y L, et al. Response of Chishui River water quality to land use in the basin based on remote sensing and GIS[J]. Resources and Environment of Yangtze River Basin, 2015, 24(2):286-291.
[17] 黄金良, 李青生, 洪华生, 等. 九龙江流域土地利用/景观格局-水质的初步关联分析[J]. 环境科学, 2011, 32(1):64-72.
Huang J L, Li Q S, Hong H S, et al. Preliminary correlation analysis of land use/landscape pattern-water quality in Jiulongjiang River basin[J]. Environmental Science, 2011, 32(1):64-72.
[18] 罗贞礼, 黄璜. “红三角”地区之郴州市的可持续发展评价研究——生态足迹法[J]. 湖南农业大学学报(社会科学版), 2004(2):33-37.
Luo Z L, Huang H. Research on sustainable development evaluation of Chenzhou City in the Red Triangle area:Ecological footprint method[J]. Journal of Hunan Agricultural University (Social Science Edition), 2004(2):33-37.
[19] 朱岗辉, 孙璐, 廖晓勇, 等. 郴州工业场地重金属和PAHs复合污染特征及风险评价[J]. 地理研究, 2012, 31(5):831-839.
Zhu G H, Sun L, Liao X Y, et al. Characteristics and risk assessment of heavy metal and PAHs composite pollution in industrial site in Chenzhou[J]. Geographical Research, 2012, 31(5):831-839.
[20] 徐洪霞. 湖南省郴州市苏仙区矿区重金属污染综合治理措施研究[D]. 杨凌: 西北农林科技大学, 2014.
Xu H X. Study on comprehensive treatment measures for heavy metal pollution in mining area of Suxian District,Chenzhou City,Hunan Province[D]. Yangling: Northwest A&F University, 2014.
[21] 蒲泽生, 黄军, 李平学. 为了郴州新世纪的明天[J]. 城乡建设, 2002(5):17.
Pu Z S, Huang J, Li P X. For the tomorrow of Chenzhou’s new century[J]. Urban and Rural Construction, 2002(5):17.
[22] 徐庆利, 兰国华. 郴州市主要河流水质评价和保护对策[J]. 绿色科技, 2015(5):184-186.
Xu Q L, Lan G H. Water quality evaluation and protection countermeasures of major rivers in Chenzhou City[J]. Green Science and Technology, 2015(5):184-186.
[23] 陈百明, 周小萍. 《土地利用现状分类》国家标准的解读[J]. 自然资源学报, 2007(6):994-1003.
Chen B M, Zhou X P. Interpretation of the national standard for classification of land use status[J]. Journal of Natural Resources, 2007(6):994-1003.
[24] 国家环境保护总局. GB 3838—2002地表水环境质量标准[S]. 北京: 中国标准出版社, 2002.
State Environmental Protection Administration. GB 3838—2002 surface water environmental quality standard[S]. Beijing: China Standards Publishing House, 2002.
[25] 黄玉瑶. 内陆水域污染生态学[M]. 北京: 科学出版社, 2001.
Huang Y Y. Pollution ecology of inland waters[M]. Beijing: Science Press, 2001.
[26] Ding J, Jiang Y, Liu Q, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin,China:A multi-scale analysis[J]. Science of the Total Environment, 2016,551-552:205-216.
[27] Li S Y, Gu S, Tan X, et al. Water quality in the upper Han River basin,China:The impacts of land use/land cover in riparian buffer zone[J]. Hazard Mater, 2009(165):317-324.
[28] Maa D, Db B, Kh C, et al. The impact of urban patterns on aquatic ecosystems:An empirical analysis in Puget lowland sub-basins[J]. Landscape and Urban Planning, 2007, 80(4):345-361.
doi: 10.1016/j.landurbplan.2006.08.001
[29] 董小俊. 南方红壤丘陵区森林景观格局分析和优化研究[D]. 北京: 首都师范大学, 2014.
Dong X J. Analysis and optimization of forest landscape pattern in red soil hilly area of southern China[D]. Beijing: Capital Normal University, 2014.
[30] 方娜, 刘玲玲, 游清徽, 等. 不同尺度土地利用方式对鄱阳湖湿地水质的影响[J]. 环境科学, 2019, 40(12):5348-5357.
Fang N, Liu L L, You Q H, et al. Effects of different scales of land use patterns on water quality in Poyang Lake wetlands[J]. Environmental Science, 2019, 40(12):5348-5357.
[31] 朱红兵, 何丽娟. 关于用SPSS中单样本K-S检验法进行正态分布等的一致性检验时适用条件的研究[J]. 首都体育学院学报, 2009, 21(4):466-470.
Zhu H B, He L J. Study on the applicable conditions for the consistency test of normal distribution and the like by single-sample K-S test in SPSS[J]. Journal of Capital University of Physical Education, 2009, 21(4):466-470.
[32] 焦欢. 渠溪河流域土地利用及格局对河流水质影响研究[D]. 重庆: 重庆工商大学, 2016.
Jiao H. Study on the impact of land use and pattern on river water quality in Quxi River basin[D]. Chongqing: Chongqing Technology and Business University, 2016.
[33] 周俊菊, 向鹃, 王兰英, 等. 祁连山东部冰沟河流域景观格局与河流水化学特征关系[J]. 生态学杂志, 2019, 38(12):3779-3788.
Zhou J J, Xiang J, Wang L Y, et al. Relationship between landscape pattern and river water chemistry characteristics of Binggou River basin in the eastern Qilian Mountains[J]. Chinese Journal of Ecolo-gy, 2019, 38(12):3779-3788.
[34] 胡琳, 李思悦. 不同空间尺度土地利用结构与景观格局对龙川江流域水质的影响[J]. 生态环境学报, 2021, 30(7):1470-1481.
doi: 10.16258/j.cnki.1674-5906.2021.07.016
Hu L, Li S Y. Effects of land use structure and landscape patterns at different spatial scales on water quality in Longchuan River basin[J]. Journal of Ecology and Environment, 2021, 30(7):1470-1481.
[35] Guo Q H, Ma K M, Yang L, et al. Testing a dynamic complex hypothesis in the analysis of land use impact on lake water quality[J]. Water Resources Management, 2010, 24(7):1313-1332.
doi: 10.1007/s11269-009-9498-y
[36] Xu Q, Wang P, Shu W, et al. Influence of landscape structures on river water quality at multiple spatial scales:A case study of the Yuan River watershed,China[J]. Ecological Indicators, 2021, 121:107226.
doi: 10.1016/j.ecolind.2020.107226
[37] 吉冬青, 文雅, 魏建兵, 等. 流溪河流域景观空间特征与河流水质的关联分析[J]. 生态学报, 2015, 35(2):246-253.
Ji D Q, Wen Y, Wei J B, et al. Correlation analysis between landscape spatial characteristics and river water quality in Liuxi River basin[J]. Acta Ecologica Sinica, 2015, 35(2):246-253.
[38] Song M, Jiang Y, Liu Q, et al. Catchment versus riparian buffers:Which land use spatial scales have the greatest ability to explain water quality changes in a typical temperate watershed?[J]. Water, 2021, 13(13):1758.
doi: 10.3390/w13131758
[1] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[2] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[3] 滑永春, 陈家豪, 孙小添, 裴志永. 内蒙古段黄河流域景观生态风险分析[J]. 自然资源遥感, 2023, 35(2): 220-229.
[4] 熊东阳, 张林, 李国庆. 基于最大熵模型的遥感土地利用多分类研究[J]. 自然资源遥感, 2023, 35(2): 140-148.
[5] 刘春霖, 夏建新. 基于LSTM-CA模型的土地利用动态模拟[J]. 自然资源遥感, 2022, 34(4): 122-128.
[6] 杨潋威, 赵娟, 朱家田, 刘雷, 张平. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
[7] 史姝姝, 窦银银, 陈永强, 匡文慧. 中国海岸带区域城市扩展遥感监测与内部地表覆盖时空分异特征分析[J]. 自然资源遥感, 2022, 34(4): 76-86.
[8] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[9] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[10] 王娟娟, 毋兆鹏, 王珊珊, 尹慧慧. 干旱区河谷绿洲土地利用冲突格局分析[J]. 自然资源遥感, 2021, 33(4): 243-251.
[11] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[12] 肖东升, 练洪. 顾及参数空间平稳性的地理加权人口空间化研究[J]. 自然资源遥感, 2021, 33(3): 164-172.
[13] 邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
[14] 汪清川, 奚砚涛, 刘欣然, 周文, 徐欣冉. 生态服务价值对土地利用变化的时空响应研究——以徐州市为例[J]. 自然资源遥感, 2021, 33(3): 219-228.
[15] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发