Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 140-148    DOI: 10.6046/zrzyyg.2022136
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于最大熵模型的遥感土地利用多分类研究
熊东阳1,2,3(), 张林2,4, 李国庆2,4()
1.中国科学院教育部水土保持与生态环境研究中心,杨凌 712100
2.中国科学院水利部水土保持研究所,杨凌 712100
3.中国科学院大学,北京 100049
4.西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100
MaxEnt-based multi-class classification of land use in remote sensing image interpretation
XIONG Dongyang1,2,3(), ZHANG Lin2,4, LI Guoqing2,4()
1. The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China
2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
全文: PDF(2352 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

影像解译中对土地利用单分类的关注成为遥感研究的热点问题。最大熵模型(MaxEnt)被评价为最有潜力的单分类算法,被广泛应用于土地利用的单分类研究。然而,单分类算法(包括MaxEnt)是否能够进行土地利用多分类尚不明晰。为了解决该问题,文章建立了利用MaxEnt进行遥感土地利用多分类的技术流程,并将该流程应用在云岩河流域的土地利用多分类研究中。使用总体分类精度、Kappa系数、灵敏度以及特异度评估MaxEnt的总体分类效果以及在各个地类上的预测表现; 同时使用Kappa值评估MaxEnt与随机森林(randem forest,RF)、最大似然法(maximum likelihood classification,MLC)、支持向量机(support vector machine,SVM)在土地利用预测上的一致性表现。结果表明: ①MaxEnt的分类表现最好,总体分类精度为84%,Kappa系数为0.8; ②MaxEnt在各个地类上没有最差的表现,甚至在某些地类上达到了最优的表现; ③MaxEnt与RF和SVM的分类一致性较高,这3种算法预测的土地利用之间一致性评估Kappa值均超过了0.6; ④MLC与其他3种分类算法预测土地利用的差异较大,Kappa值小于0.4,说明MLC不适合该地区的土地利用解译。文章建立的技术流程仅仅依赖于土地利用发生概率,而不依赖于阈值选择,从而使得以MaxEnt为代表的单分类算法在遥感土地多分类应用中能够发挥巨大潜力。对于大范围的土地利用解译,加入并行计算将有利于提高利用MaxEnt解决多分类问题的时间效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊东阳
张林
李国庆
关键词 最大熵模型土地利用单分类算法多分类算法遥感解译云岩河流域    
Abstract

The one-class classification (OCC) of land use in image interpretation is a hot research topic of remote sensing. Many novel algorithms of OCC were introduced and developed. The maximum entropy model (MaxEnt)-the most promising OCC algorithm as evaluated-is widely used in the OCC study of land use. However, it is unclear about the applicability of these algorithms (including MaxEnt) in multi-class classification (MCC) of land use. Thus, this study established a procedure for MaxEnt-based land-use MCC in remote sensing image interpretation and applied the procedure to the land-use MCC of the Yunyan River basin. The overall classification effect of MaxEnt and the performance of MaxEnt in the prediction of various land were evaluated using overall classification accuracy, Kappa coefficient, sensitivity, and specificity. Moreover, the Kappa coefficient was also used to evaluate the consistency between MaxEnt and random forest (RF), maximum likelihood classification (MLC), and support vector machine (SVM) in the prediction of land use maps. The results are as follows: ① MaxEnt showed the best classification effect, with overall classification accuracy of 84% and a Kappa coefficient of 0.8; ② MaxEnt showed no worst performance in any land type, and even performed the best in some land types; ③ MaxEnt showed high classification consistency with RF and SVM, and the consistency evaluation of the land use maps obtained using the three algorithms yielded Kappa coefficients of greater than 0.6; ④ Compared with the other the three algorithms, MLC yielded a significantly different land use map, with a Kappa coefficient of less than 0.4. This result indicates that MLC is not applicable to the interpretation of land use of the study area. The procedure established in this study only depends on the occurrence probability of land use rather than the threshold selected. As a result, the OCC algorithms represented by MaxEnt have great potential for application to the land-use MCC in remote sensing image interpretation. In addition, the introduction of parallel computing into large-scale land use interpretation will help improve the efficiency of solving MCC problems using MaxEnt.

Key wordsMaxEnt    land use    one-class classification algorithm    multi-class classification algorithm    remote sensing image interpretation    Yunyan River basin
收稿日期: 2022-04-06      出版日期: 2023-07-07
ZTFLH:  TP75  
基金资助:国家自然科学基金项目“潜在植被约束条件下气候变化诱导树种聚合模式演变及其对森林经营启示——以黄土高原为例”(31971488);国家重点研发计划项目“黄土高原人工生态系统结构改善和功能提升技术”(2017YFC0504601)
通讯作者: 李国庆(1983-),男,副研究员,主要从事植被恢复与GIS模拟的研究。Email: liguoqing@nwsuaf.edu.cn
作者简介: 熊东阳(1997-),男,硕士研究生,主要从事遥感土地利用分类算法的研究。Email: hpuxiongdy@163.com
引用本文:   
熊东阳, 张林, 李国庆. 基于最大熵模型的遥感土地利用多分类研究[J]. 自然资源遥感, 2023, 35(2): 140-148.
XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022136      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/140
Fig.1  研究区概况
传感器
类型
波段 波长范
围/μm
空间分
辨率/m
主要应用领域
陆地成像仪OLI B2 Blue
(蓝光波段)
0.450~0.515 30 用于水体穿透、分辨植被和土壤等
B3 Green
(绿光波段)
0.525~0.600 30 用于分辨植被等
B4 Red
(红光波段)
0.630~0.680 30 用于观测道路、裸露土壤和植被等
B5 NIR
(近红外波段)
0.845~0.885 30 用于估算生物量、分辨潮湿土壤等
B6 SWIR 1
(短波红外1波段)
1.560~1.660 30 用于分辨道路、土壤和水等
B7 SWIR 2
(短波红外2波段)
2.100~2.300 30 用于矿物识别、分辨植被和潮湿土壤等
Tab.1  Landsat8陆地成像仪波段B2—B7参数特征
Fig.2  最大熵模型进行土地利用多分类的技术流程
Kappa 一致性程度
[-1.00, 0) 极差
[0, 0.20) 微弱
[0.20, 0.40)
[0.40, 0.60) 中度
[0.60, 0.80) 高度
[0.80, 1.00] 极强
Tab.2  Kappa系数评价一致性标准
Fig.3  4种算法的土地利用分类图
指标 算法
MaxEnt RF MLC SVM
OA/% 84.06 80.88 75.76 79.71
Kappa 0.80 0.76 0.69 0.75
Tab.3  4种算法的OA和Kappa系数
土地利用类型 MaxEnt RF MLC SVM
灵敏度 特异度 灵敏度 特异度 灵敏度 特异度 灵敏度 特异度
草地 0.93 0.89 0.79 0.93 0.38 0.96 0.93 0.82
耕地 0.85 0.96 0.69 0.96 0.75 0.91 0.85 0.98
灌木 0.46 0.98 0.62 0.91 0.67 0.89 0.15 0.98
建设用地 0.93 1.00 0.93 1.00 1.00 0.94 1.00 1.00
森林 1.00 0.96 1.00 0.96 0.93 1.00 1.00 0.96
Tab.4  4种算法的分类精度比较
Fig.4  4种分类算法分类结果的Kappa一致性检验和混合矩阵
Fig.5  云岩河流域不同土地利用类型的面积
[1] 刘南威, 郭有立. 综合自然地理学(第2版)[M]. 北京: 科学出版社, 2004.
Liu N W, Guo Y L. Synthesize physical geography(2nd edition)[M]. Beijing: Science Press, 2004.
[2] 刘彦随. 区域土地利用优化配置[M]. 北京: 学苑出版社, 1999.
Liu Y S. Optimal regional allocation of land use[M]. Beijing: Xueyuan Press, 1999.
[3] 舒弥, 杜世宏. 国土调查遥感40年进展与挑战[J]. 地球信息科学学报, 2022, 24(4):597-616.
doi: 10.12082/dqxxkx.2022.210512
Shu M, Du S H. Forty years’ progress and challenges of remote sensing in national land survey[J]. Journal of Geo-Information Science, 2022, 24(4):597-616.
[4] Xu L, Herold M, Tsendbazar N E, et al. Time series analysis for global land cover change monitoring:A comparison across sensors[J]. Remote Sensing of Environment, 2022, 271:112905.
doi: 10.1016/j.rse.2022.112905
[5] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
Zhao Y S. Principles and methods of remote sensing for applied anaysis[M]. Beijing: Science Press, 2003.
[6] Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5):823-870.
doi: 10.1080/01431160600746456
[7] Li W K, Guo Q H. A maximum entropy approach to one-class classification of remote sensing imagery[J]. International Journal of Remote Sensing, 2010, 31(7-8):2227-2235.
doi: 10.1080/01431161003702245
[8] Shahzad N, Ding X, Abbas S. A comparative assessment of machine learning models for landslide susceptibility mapping in the rugged terrain of northern Pakistan[J]. Applied Sciences, 2022, 12(5):2280-2302.
doi: 10.3390/app12052280
[9] Arabameri A, Asadi N O, Saha S, et al. Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility[J]. Remote Sensing, 2020, 12(11):1890-1918.
doi: 10.3390/rs12111890
[10] Fernández I C, Morales N S. One-class land-cover classification using MaxEnt:The effect of modelling parameterization on classification accuracy[J]. PeerJ, 2019, 7:e7016.
doi: 10.7717/peerj.7016
[11] Lin J Y, Liu X P, Li K, et al. A maximum entropy method to extract urban land by combining MODIS reflectance,MODIS NDVI,and DMSP-OLS data[J]. International Journal of Remote Sensing, 2014, 35(17-18):6708-6727.
doi: 10.1080/01431161.2014.960623
[12] 陈颖彪, 郑子豪, 吴志峰, 等. 夜间灯光遥感数据应用综述和展望[J]. 地理科学进展, 2019, 38(2):205-223.
doi: 10.18306/dlkxjz.2019.02.005
Chen Y B, Zheng Z H, Wu Z F, et al. Review and prospect of application of nighttime light remote sensing data[J]. Progress in Geo-graphy, 2019, 38(2):205-223.
[13] 白琪阶, 宋志松, 王红瑞, 等. 基于SWAT模型定量分析自然因素与人为因素对水文系统的影响——以漳卫南运河流域为例[J]. 自然资源学报, 2018, 33(9):1575-1587.
doi: 10.31497/zrzyxb.20170882
Bai Q J, Song Z S, Wang H R, et al. Quantitative analysis of the impact of natural factors and human factors on hydrological system using the SWAT model:The Zhangweinan canal basin case[J]. Journal of Natural Resources, 2018, 33(9):1575-1587.
doi: 10.31497/zrzyxb.20170882
[14] Arnold J G, Williams J R, Maidment D R. Continuous-time water and sediment-routing model for large basins[J]. Journal of Hydraulic Engineering, 1995, 121(2):171-183.
doi: 10.1061/(ASCE)0733-9429(1995)121:2(171)
[15] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
Li H. Statistics learning method[M]. Beijing: Tsinghua University Press, 2012.
[16] Jaynes E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4):620-630.
doi: 10.1103/PhysRev.106.620
[17] Sanchez-Hernandez C, Boyd D S, Foody G M. One-class classification for mapping a specific land-cover class:SVDD classification of Fenland[J]. IEEE Transactions on Geoence and Remote Sensing, 2007, 45(4):1061-1073.
[18] Phillips S J, Dudík M, Schapire R E. Maxent software for modeling species niches and distributions(Version 3.4.1)[EB/OL]. [2022-08-22]http://-biodiversityinformatics.amnh.org/open_source/maxent/.
[19] 周珂, 杨永清, 张俨娜, 等. 光学遥感影像土地利用分类方法综述[J]. 科学技术与工程, 2021, 21(32):13603-13613.
Zhou K, Yang Y Q, Zhang Y N, et al. Review of land use classification methods based on optical remote sensing images[J]. Science Technology and Engineering, 2021, 21(32):13603-13613.
[20] Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
doi: 10.1016/j.isprsjprs.2016.01.011
[21] Sisodia P S, Tiwari V, Kumar A. Analysis of supervised maximum likelihood classification for remote sensing image[C]// International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014).IEEE, 2014:1-4.
[22] 骆剑承, 王钦敏, 马江洪, 等. 遥感图像最大似然分类方法的EM改进算法[J]. 测绘学报, 2002(3):234-239.
Luo J C, Wang Q M, Ma J H, et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographica Sinica, 2002(3):234-239.
[23] Otukei J R, Blaschke T. Land cover change assessment using decision trees,support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12:S27-S31.
doi: 10.1016/j.jag.2009.11.002
[24] 张睿, 马建文. 支持向量机在遥感数据分类中的应用新进展[J]. 地球科学进展, 2009, 24(5):555-562.
doi: 10.11867/j.issn.1001-8166.2009.05.0555
Zhang R, Ma J W. State of the art on remotely sensed data classification based on support vector machines[J]. Advances in Earth Science, 2009, 24(5):555-562.
doi: 10.11867/j.issn.1001-8166.2009.05.0555
[25] Thomas N, Hanna M, Tim A, et al. Satellite:Handling and manipulating remote sensing data[EB/OL]. [2021-10-12]https://cran.r-project.org/web/packages/satellite/index.html.
[26] 李国庆, 黄菁华, 刘冠, 等. 基于Landsat8卫星影像土地利用景观破碎化研究——以陕西省延安麻塔流域为例[J]. 国土资源遥感, 2020, 32(3):121-128.doi:10.6046/gtzyyg.2020.03.16.
doi: 10.6046/gtzyyg.2020.03.16
Li G Q, Huang J H, Liu G, et al. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image:A case study of Mata watershed in Yanan,Shaanxi Province[J]. Remote Sensing for Land and Resources, 2020, 32(3):121-128.doi:10.6046/gtzyyg.2020.03.16.
doi: 10.6046/gtzyyg.2020.03.16
[27] Artstein R, Poesio M. Inter-coder agreement for computational linguistics[J]. Computational Linguistics, 2008, 34(4):555-596.
doi: 10.1162/coli.07-034-R2
[28] Cohen J. A coefficient of agreement for nominal scales[J]. Educational and psychological measurement, 1960, 20(1):37-46.
doi: 10.1177/001316446002000104
[29] Mack B, Waske B. In-depth comparisons of MaxEnt,biased SVM and one-class SVM for one-class classification of remote sensing data[J]. Remote Sensing Letters, 2017, 8(3):290-299.
doi: 10.1080/2150704X.2016.1265689
[30] 许泽宇, 沈占锋, 李杨, 等. 增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类[J]. 遥感学报, 2022, 26(2):406-415.
Xu Z Y, Shen Z F, Li Y, et al. Classification of high-resolution remote sensing images based on enhanced Deep Lab algorithm and adaptive loss function[J]. National Remote Sensing Bulletin, 2022, 26(2):406-415.
doi: 10.11834/jrs.20209200
[31] 吴琳琳, 李晓燕, 毛德华, 等. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1):127-134.doi:10.6046/zrzyyg.2021061.
doi: 10.6046/zrzyyg.2021061
Wu L L, Li X Y, Mao D H, et al. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1):127-134.doi:10.6046/zrzyyg.2021061.
doi: 10.6046/zrzyyg.2021061
[32] 王逸男, 孔祥兵, 赵春敬, 等. 2000—2020年黄土高原植被覆盖度时空格局变化分析[J]. 水土保持学报, 2022, 36(3):130-137.
Wang Y N, Kong X B, Zhao C J, et al. Change of vegetation coverage in the Loess Plateau from 2000 to 2020 and its spatiotemporal pattern analysis[J]. Journal of Soil and Water Conservation, 2022, 36(3):130-137.
[33] Li G Q, Huang J H, Guo H, et al. Projecting species loss and turnover under climate change for 111 Chinese tree species[J]. Forest Ecology and Management, 2020, 477:118488.
doi: 10.1016/j.foreco.2020.118488
[34] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological modelling, 2006, 190(3-4):231-259.
doi: 10.1016/j.ecolmodel.2005.03.026
[35] Li W, Zhang W, Li Z, et al. A new method for surface water extraction using multi-temporal Landsat8 images based on maximum entropy model[J]. European Journal of Remote Sensing, 2022, 55(1):303-312.
doi: 10.1080/22797254.2022.2062054
[36] Rapinel S, Hubert-Moy L. One-class classification of natural vegetation using remote sensing:A review[J]. Remote Sensing, 2021, 13(10):1892-1915.
doi: 10.3390/rs13101892
[37] Norallahi M, Kaboli H S. Urban flood hazard mapping using machine learning modelings:GARP,RF,MaxEnt and NB[J]. Natural Hazards, 2021, 106(1):119-137.
doi: 10.1007/s11069-020-04453-3
[38] 关雪峰, 曾宇媚. 时空大数据背景下并行数据处理分析挖掘的进展及趋势[J]. 地理科学进展, 2018, 37(10):1314-1327.
doi: 10.18306/dlkxjz.2018.10.002
Guan X F, Zeng Y M. Research progress and trends of parallel processing,analysis,and mining of big spatiotemporal data[J]. Progress in Geography, 2018, 37(10):1314-1327.
[1] 阳煜瑾, 杨帆, 徐祯妮, 李祝. 洞庭湖区生态服务-经济发展时空协调分析与优化[J]. 自然资源遥感, 2023, 35(3): 190-200.
[2] 周石松, 汤玉奇, 程宇翔, 邹滨, 冯徽徽. 郴州市郴江河流域水质与土地利用关联的空间异质性分析[J]. 自然资源遥感, 2023, 35(3): 230-240.
[3] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[4] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[5] 滑永春, 陈家豪, 孙小添, 裴志永. 内蒙古段黄河流域景观生态风险分析[J]. 自然资源遥感, 2023, 35(2): 220-229.
[6] 史姝姝, 窦银银, 陈永强, 匡文慧. 中国海岸带区域城市扩展遥感监测与内部地表覆盖时空分异特征分析[J]. 自然资源遥感, 2022, 34(4): 76-86.
[7] 刘春霖, 夏建新. 基于LSTM-CA模型的土地利用动态模拟[J]. 自然资源遥感, 2022, 34(4): 122-128.
[8] 杨潋威, 赵娟, 朱家田, 刘雷, 张平. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
[9] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[10] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[11] 刘志中, 宋英旭, 叶润青. 渝东北2014年“8·31”暴雨诱发滑坡遥感解译与分析[J]. 自然资源遥感, 2021, 33(4): 192-199.
[12] 王娟娟, 毋兆鹏, 王珊珊, 尹慧慧. 干旱区河谷绿洲土地利用冲突格局分析[J]. 自然资源遥感, 2021, 33(4): 243-251.
[13] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[14] 肖东升, 练洪. 顾及参数空间平稳性的地理加权人口空间化研究[J]. 自然资源遥感, 2021, 33(3): 164-172.
[15] 邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发