Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 14-25    DOI: 10.6046/zrzyyg.2022378
  地面沉降监测专栏 本期目录 | 过刊浏览 | 高级检索 |
融合DT和SDFPT的时序InSAR矿区形变监测与分析
于冰1,2,3,4(), 王冰1, 刘国祥5, 张过3, 胡云亮1, 胡金龙1
1.西南石油大学土木工程与测绘学院,成都 610500
2.西南石油大学油气空间信息工程研究所,成都 610500
3.武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
4.中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室,武汉 430077
5.西南交通大学地球科学与环境工程学院,成都 611756
Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR
YU Bing1,2,3,4(), WANG Bing1, LIU Guoxiang5, ZHANG Guo3, HU Yunliang1, HU Jinlong1
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Institude of Petroleum and Natural Gas Spatial Information Engineering, Southwest Petroleum University, Chengdu 610500, China
3. State Key Laboratory of Information Engineering in Surveying, Mapping & Remote Sensing, Wuhan University, Wuhan 430079, China
4. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
5. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
全文: PDF(20899 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

煤矿高强度开采会导致严重的地面形变及次生地质灾害。时序合成孔径雷达干涉(synthetic aperture Radar interferometry, InSAR)具有较强的形变监测能力,但在开采核心及周边低相干区域时无法监测到足够的目标点。该文尝试将分布式目标(distributed target, DT)和缓慢去相关滤波相位目标(slowly-decorrelating filtered phase target, SDFPT)进行联合,以提高矿区形变监测点的密度和覆盖度。分别采用快速同质点选取(fast statistically homogenous pixel selection, FaSHPS)法和振幅离差指数法选取DT和SDFPT候选点,分别对2类点进行相位优化和稳定性分析,筛选出符合条件的DT和SDFPT形成融合点集,并对其进行三维相位解缠、恢复相位时间序列和时空滤波,最终得到融合点集的形变时间序列和年均形变速率。选取2018年4月—2020年4月获取的覆盖布尔台煤矿的60景Sentinel-1影像进行形变监测,结果表明,融合DT和SDFPT后形变点密度和覆盖度显著提升,可监测最大形变量级也随之增加。实验区域内存在5处形变漏斗,最大累积形变量达到-309.76 mm; 形变影响范围和不同年份时序形变量的差异与矿区开采活动密切相关。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于冰
王冰
刘国祥
张过
胡云亮
胡金龙
关键词 布尔台煤矿分布式目标缓慢去相关滤波相位目标地表形变Sentinel-1A    
Abstract

High-intensity coal mining leads to significant surface deformation and secondary geological disasters. Synthetic aperture Radar interferometry (InSAR), exhibiting high deformation monitoring capability, fails to detect enough target pixels in the mining core and surrounding low-coherence areas. This study intends to increase the density and coverage of deformation monitoring points in mining areas by combining distributed targets (DTs) and slowly-decorrelating filtered phase targets (SDFPTs). First, DT and SDFPT candidate pixels were selected using the fast statistically homogenous pixel selection (FaSHPS) method and the amplitude dispersion index method, respectively for phase optimization and stability analysis. Then, qualified DT and SDFPT pixels were screened out to constitute a fused pixel set, which was subjected to three-dimensional phase unwrapping, phase time series recovery, and spatio-temporal filtering. Consequently, the deformation time series and the annual average deformation rate were determined based on the fused pixel set. Finally, the method proposed in this study was applied to monitor the deformation in the Buertai coal mine using 60 scenes of Sentinel-1 images covering the coal mine from April 2018 to April 2020. The results reveal a significant increase in the density and coverage of deformation points through the integration of DT and SDFPT, thus allowing for the monitoring of higher levels of maximum deformation. Within the experimental area, five deformation cones were identified, with the maximum cumulative deformation amplitude reaching -309.76 mm. The influencing range of the deformations and the difference in the deformation amplitude of the time series in different years are closely related to mining activities.

Key wordsBuertai coal mine    distributed target    slowly-decorrelating filtered phase target    surface deformation    Sentinel-1A
收稿日期: 2022-09-19      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于卫星升降轨时序DInSAR的塔里木油田沉降监测及储层状态参数反演”(41801399);测绘遥感信息工程国家重点实验室开放基金项目“基于星载SAR干涉的克拉玛依油田时序二维形变监测及储层参数反演”(18E01);大地测量与地球动力学国家重点实验室开放基金项目“玛湖特大油田InSAR沉降监测及储层动力学参数反演”(SKLGED2020-5-1-E);四川省杰出青年科技人才项目“西南地区植被干旱胁迫遥感监测与预警”(2021JDJQ0007)
作者简介: 于 冰(1985-),男,博士,副教授,主要研究方向为合成孔径雷达干涉测量与形变监测、高分辨率遥感自然和人文环境监测。Email: rs_insar_bingyu@163.com
引用本文:   
于冰, 王冰, 刘国祥, 张过, 胡云亮, 胡金龙. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 14-25.
YU Bing, WANG Bing, LIU Guoxiang, ZHANG Guo, HU Yunliang, HU Jinlong. Deformation monitoring and analysis of mining areas based on the DT-SDFPT combined time-series InSAR. Remote Sensing for Natural Resources, 2024, 36(1): 14-25.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022378      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/14
Fig.1  研究区域位置
Fig.2  时空基线
Fig.3  数据处理流程
Fig.4  数据集质量评价
Fig.5  优化前后差分干涉相位对比
Fig.6  研究区LOS年平均形变速率
Fig.7  基于SBAS-InSAR的形变精度验证
Fig.8  基于PS-InSAR的形变精度验证
Fig.9  研究区域特征点分布
Fig.10  特征点时间序列累积形变量
Fig.11  区域A剖面线时序形变图
Fig.12  区域B剖面线时序形变图
Fig.13  区域C剖面线时序形变图
[1] 许萍, 杨晶. 2018年中国能源产业回顾及2019年展望[J]. 石油科技论坛, 2019, 38(1):8-19.
Xu P, Yang J. Review of China’ energy industry in 2018 and outlook of 2019[J]. Oil Forum, 2019, 38(1):8-19.
[2] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社,1991.
He G Q, Yang L, Liang G D, et al. Mining subsidence science[M]. Xuzhou: China University of Mining and Technology Press,1991.
[3] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
doi: 10.1109/36.898661
[4] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[5] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报:信息科学版, 2004, 29(8):664-668.
Li D R, Liao M S, Wang Y. Progress of permanent scatterer interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668.
[6] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5):1476-1486.
Li S S, Li Z W, Hu J, et al. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5):1476-1486.
[7] Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014, 140:94-106.
doi: 10.1016/j.rse.2013.08.038
[8] Yu B, Liu G, Li Z, et al. Subsidence detection by TerraSAR-X interferometry on a network of natural persistent scatterers and artificial corner reflectors[J]. Computers & Geosciences, 2013, 58:126-136.
doi: 10.1016/j.cageo.2013.04.020
[9] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(9):3460-3470.
[10] Dwivedi R, Narayan A B, Tiwari A, et al. Optimal estimation of interferometric phase for measuring surface deformation[J]. International Journal of Remote Sensing, 2017, 38(5):1339-1349.
doi: 10.1080/01431161.2017.1280627
[11] 范锐彦, 焦健, 高胜, 等. InSAR时序分析高相干目标选取方法比较研究[J]. 地球信息科学学报, 2016, 18(6):805-814.
doi: 10.3724/SP.J.1047.2016.00805
Fan R Y, Jiao J, Gao S, et al. Comparison research of high coherent target selection based on InSAR time series analysis[J]. Journal of Geo-information Science, 2016, 18(6):805-814.
[12] Parizzi A, Brcic R. Adaptive InSAR stack multilooking exploiting amplitude statistics:A comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):441-445.
doi: 10.1109/LGRS.2010.2083631
[13] 李冠楠, 谭衢霖, 谢酬, 等. 基于DS-InSAR的复杂山区铁路沿线形变监测研究[J]. 中国铁路, 2019(2):59-65.
Li G N, Tan Q L, Xie C, et al. Monitoring study on deformation along complex mountain railway based on DS-InSAR[J]. China Railway, 2019(2):59-65.
[14] Ao M, Zhang L, Dong Y, et al. Characterizing the evolution life cycle of the Sunkoshi landslide in Nepal with multi-source SAR data[J]. Scientific Reports, 2020, 10:17988.
doi: 10.1038/s41598-020-75002-y pmid: 33093621
[15] 陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7):2441-2454.
doi: 10.6038/cjg2019M0255
Chen Y X, Jiang L M, Liang L L, et al. Monitoring permafrost deformation in the upstream Heihe River,Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7):2441-2454.
[16] Goel K, Adam N. An advanced algorithm for deformation estimation in non-urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:100-110.
doi: 10.1016/j.isprsjprs.2012.06.001
[17] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603.
doi: 10.6038/cjg20161007
Jiang M, Ding X L, He X F, et al. FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603.
[18] 李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018, 43(10):1531-1537.
Li D, Deng K Z, Gao X X, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1531-1537.
[19] 胡爽, 吴文豪, 龙四春, 等. 分布式目标在红庆河煤矿形变监测中的应用[J]. 大地测量与地球动力学, 2019, 39(12):1261-1264.
Hu S, Wu W H, Long S C, et al. Application of distributed scatterer in deformation monitoring of Hongqinghe coal mine[J]. Journal of Geodesy and Geodynamics, 2019, 39(12):1261-1264.
[20] 李毅, 蒋金雄, 杜玉玲, 等. 融合分布式目标的矿区采动地表时序InSAR监测[J]. 中国矿业大学学报, 2020, 49(6):1199-1206,1232.
Li Y, Jiang J X, Du Y L, et al. Surface subsidence monitoring by time series InSAR integrating with distributed targets in mining region[J]. Journal of China University of Mining & Technology, 2020, 49(6):1199-1206,1232.
[21] 李柱, 范洪冬, 高彦涛, 等. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3):138-145.doi:10.6046/zrzyyg.2021245.
Li Z, Fan H D, Gao Y T, et al. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda Coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3):138-145.doi:10.6046/zrzyyg.2021245.
[22] Zhang Z, Wang C, Tang Y, et al. Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39:49-55.
doi: 10.1016/j.jag.2015.02.007
[23] 蒋金雄, 杜玉玲, 陈宇, 等. 利用DS-InSAR技术监测沛北矿区地表形变[J]. 测绘通报, 2021(2):117-121.
doi: 10.13474/j.cnki.11-2246.2021.0056
Jiang J X, Du Y L, Chen Y, et al. Monitoring and analysis of surface deformation in Peibei mining region based on DS-InSAR technique[J]. Bulletin of Surveying and Mapping, 2021(2):117-121.
doi: 10.13474/j.cnki.11-2246.2021.0056
[24] 贾会会, 张海清, 李克达, 等. 融合分布式散射体时序InSAR技术在矿区形变调查中的应用[J]. 吉林大学学报(地球科学版), 2022, 52(1):202-213.
Jia H H, Zhang H Q, Li K D, et al. Application of fusion distributed scatterer time-series InSAR technique in deformation survey of mining area[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(1):202-213.
[25] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
[26] Hooper A. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302.
[27] 魏纪成, 张红霞, 白泽朝, 等. 融合D-InSAR与PS-InSAR的神东矿区开采沉陷监测方法[J]. 金属矿山, 2019(10):55-60.
Wei J C, Zhang H X, Bai Z C, et al. Integrated monitoring method of the mining subsidence of Shendong mining area based on D-InSAR and PS-InSAR technology[J]. Metal Mine, 2019(10):55-60.
[28] Xu X, Ma C, Lian D, et al. Inversion and analysis of mining subsidence by integrating DInSAR,offset tracking,and PIM technology[J]. Journal of Sensors, 2020:4136837.
[29] Ma C, Cheng X, Yang Y, et al. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset—Case study of working faces 22201-1/2 in Bu’ertai mine,Shendong coalfield,China[J]. Remote Sensing, 2016, 8(11):951.
doi: 10.3390/rs8110951
[30] 成晓倩, 马超, 康建荣, 等. 联合DInSAR和PIM技术的沉陷特征模拟和时序分析[J]. 中国矿业大学学报, 2018, 47(5):1141-1148.
Cheng X Q, Ma C, Kang J R, et al. Simulation and time series analysis of mining subsidence by integrating DInSAR and PIM technology[J]. Journal of China University of Mining & Technology, 2018, 47(5):1141-1148.
[31] 马威, 马超, 赵鹏飞, 等. 高分辨SAR相干系数图像的开采沉陷区提取[J]. 测绘科学, 2018, 47(5):115-120.
Ma W, Ma C, Zhao P F, et al. Extraction of mining subsidence area based on coherence image of high resolution SAR[J]. Science of Surveying and Mapping, 2018, 47(5):115-120.
[32] 周秀隆, 吴嘉林, 辛德林. 世界第一矿——布尔台煤矿设计综述[J]. 煤炭工程, 2011(3):4-7.
Zhou X L, Wu J L. Xin D L. Integrated innovation to design world No.One coal Mine-Buertai mine[J]. Coal Engineering, 2011(3):4-7.
[33] Jiang M, Ding X, Tian X, et al. A hybrid method for optimization of the adaptive Goldstein filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98:29-43.
doi: 10.1016/j.isprsjprs.2014.09.012
[34] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12):4767-4776.
doi: 10.6038/cjg2018L0490
Jiang M, Ding X L, Li Z W. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776.
[35] Zhang Z, Zeng Q, Jiao J. Deformations monitoring in complicated-surface areas by adaptive distributed Scatterer InSAR combined with land cover:Taking the Jiaju landslide in Danba,China as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186:102-122.
doi: 10.1016/j.isprsjprs.2022.02.004
[36] Hooper A, Zebker H A. Phase unwrapping in three dimensions with application to InSAR time series[J]. Journal of the Optical Society of America, 2007, 24(9):2737-47.
[37] Hooper A, Segall P, Zebker H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis,with application to Volcán Alcedo,Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7).
[1] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[2] 明小勇, 田义超, 张强, 陶进, 张亚丽, 林俊良. 基于Sentinel-1A钦防地区地面沉降监测与分析[J]. 自然资源遥感, 2024, 36(1): 35-48.
[3] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[4] 何彬方, 姚筠, 冯妍, 刘惠敏, 戴娟. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
[5] 韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2): 251-260.
[6] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[7] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[8] 刘警鉴, 李洪忠, 华璀, 孙毓蔓, 陈劲松, 韩宇. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1): 191-199.
[9] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[10] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
[11] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
[12] 葛大庆, 王艳, 范景辉, 刘圣伟, 郭小方, 王毅. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 19(4): 14-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发