Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 26-34    DOI: 10.6046/zrzyyg.2022497
  地面沉降监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于InSAR技术门源地震地表形变监测与分析
金鑫田1,2,3(), 王世杰1,2,3,4(), 张兰军1,2,3, 高星月1,2,3
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
4.甘肃大禹九洲空间信息科技有限公司院士专家工作站,兰州 730050
InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations
JIN Xintian1,2,3(), WANG Shijie1,2,3,4(), ZHANG Lanjun1,2,3, GAO Xingyue1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Nation-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
4. Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Co., Ltd., Lanzhou 730050, China
全文: PDF(13990 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地震引发的地表形变规模大、范围广,由地震引发的次生地质灾害对当地基础设施和工程建设影响明显。研究门源地震造成的地表形变,对理解地震形变运动过程、识别地质灾害隐患具有重要意义。利用合成孔径雷达差分干涉测量(differential interferometric synthetic aperture Radar,D-InSAR)技术获取门源地震同震形变场,根据升降轨几何关系,提取门源地震地表二维形变信息; 利用覆盖研究区域的21景升轨Sentinel-1A影像,基于短基线集合成孔径雷达干涉测量(small baseline subset-interferometric synthetic aperture Radar,SBAS-InSAR)技术提取门源地震震后地表形变信息,得到视线向(line of sight,LOS)的时间序列和平均形变速率。结果表明,同震形变主要分布在冷龙岭断裂与托莱山断裂的交汇处,LOS向地表形变升轨隆升形变量为0.40 m,沉降量为-0.65 m,降轨隆升形变量为0.80 m,沉降量为-0.70 m; 联合升降轨视线向结果分析二维形变,得到垂直方向最大形变量为-0.32 m,以沉降为主,水平方向最大形变量为0.87 m,以向东运动为主,说明此次地震水平方向形变显著,断层运动状态为左旋走滑作用。2022年1月17日—9月26日期间,整体形变较为稳定,部分区域形变明显,断裂带活动是影响地表形变的主要因素,平均形变速率最大值为53 mm/a,最大形变量达到77 mm。研究结果可为地震灾害防治、应急管理工作和社会经济可持续发展提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金鑫田
王世杰
张兰军
高星月
关键词 地表形变InSAR门源地震形变监测    
Abstract

Earthquake-induced surface deformations are characterized by large scales and extensive coverage, and the resultant secondary geological disasters significantly impact local infrastructure and engineering construction. Investigating the surface deformations caused by the Menyuan earthquake is critical for understanding the seismic deformation movement and identifying potential geological disasters. This study obtained the coseismic deformation field of the Menyuan earthquake using the differential interferometric synthetic aperture Radar (D-InSAR) technique. Based on the geometric relationships between the ascending descending passes, this study extracted the two-dimensional information of surface deformations induced by the Menyuan earthquake. The results show that the coseismic deformations occurred primarily at the intersection of Lenglongling and Tuolaishan faults. The line-of-sight (LOS) surface deformations from ascending and descending passes exhibited uplift of 0.40 m and 0.80 m and subsidence of -0.65 m and -0.70 m, respectively. As indicated by the analysis of two-dimensional deformation based on the ascending and descending LOS surface deformation results, the maximum amplitude of vertical deformations dominated by subsidence was -0.32 m and the maximum amplitude of horizontal deformation dominated by eastward motion was 0.87 m, suggesting significant horizontal seismic deformations and fault activity dominated by left-lateral strike-slip process. Based on the 21 scenes of Sentinel-1A SAR images covering the study area taken from the ascending pass, this study extracted the information on the surface deformations after the Mengyuan earthquake using the small baseline subset-interferometric synthetic aperture Radar (SBAS-InSAR) technique, determining the LOS time series and average deformation rates. The results show that from January 17, 2022 to September 26, 2022, the study area experienced relatively stable overall deformations and significant local deformations. The fault activity was identified as the primary factor affecting the surface deformations, with a maximum average deformation rate of 53 mm/a and a maximum deformation amplitude of 77 mm. The results of this study will provide technical support for earthquake disaster mitigation, emergency management, and sustainable socio-economic development.

Key wordssurface deformation    InSAR    Menyuan earthquake    deformation monitoring
收稿日期: 2022-12-26      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于无人机的既有线轨道检测精度问题研究”(41861061);兰州交通大学天佑创新团队项目“灾害监测及应急制图”(TY202001)
通讯作者: 王世杰(1971-),男,硕士,教授级高级工程师,研究方向为灾害监测和自然资源变化监测。Email: wangshijie@mail.lzjtu.cn
作者简介: 金鑫田(1996-),男,硕士研究生,研究方向为InSAR监测地质灾害。Email: 1169955850@qq.com
引用本文:   
金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
JIN Xintian, WANG Shijie, ZHANG Lanjun, GAO Xingyue. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022497      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/26
Fig.1  研究区域概况示意图
序号 轨道
成像时间 轨道
方向
序号 轨道
成像时间 轨道
方向
1 33 2021-12-29 降轨 10 128 2022-05-17 升轨
2 33 2022-01-10 降轨 11 128 2022-05-29 升轨
3 128 2022-01-05 升轨 12 128 2022-06-10 升轨
4 128 2022-01-17 升轨 13 128 2022-06-22 升轨
1 128 2022-01-17 升轨 14 128 2022-07-04 升轨
2 128 2022-01-29 升轨 15 128 2022-07-16 升轨
3 128 2022-02-10 升轨 16 128 2022-07-28 升轨
4 128 2022-03-06 升轨 17 128 2022-08-09 升轨
5 128 2022-03-18 升轨 18 128 2022-08-21 升轨
6 128 2022-03-30 升轨 19 128 2022-09-02 升轨
7 128 2022-04-11 升轨 20 128 2022-09-14 升轨
8 128 2022-04-23 升轨 21 128 2022-09-26 升轨
9 128 2022-05-05 升轨
Tab.1  所用SAR影像的基本信息
Fig.2  技术流程
Fig.3  门源地震InSAR同震形变场
Fig.4  门源地震二维形变结果
Fig.5  SAR观测示意图
Fig.6  门源地震震后地表平均形变速率
Fig.7  门源地震震后时序累计地表形变
Fig.8  特征点时序形变
[1] 戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 2017, 25(4):1151-1164.
Dai L X, Xu Q, Fan X M, et al. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 2017, 25(4):1151-1164.
[2] 韩用顺, 朱颖彦, 孔亚平, 等. 四川省汶川地震极重灾区次生山地灾害分布规律与发育趋势[J]. 中国地质灾害与防治学报, 2010, 21(4):14-21.
Han Y S, Zhu Y Y, Kong Y P, et al. Distribution and development of secondary mountain hazards induced by the May 12,2008 Wenchuan earthquake in the ten most severely-afflicted counties[J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(4):14-21.
[3] 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
Xu Q, Guo C, Dong X J. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
[4] 汪东, 来风兵, 陈孟禹, 等. 基于InSAR技术天山乌吐劲河谷同震形变遥感研究[J]. 国土资源遥感, 2019, 31(1):187-194.doi:10.6046/gtzyyg.2019.01.25.
Wang D, Lai F B, Chen M Y, et al. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Natural Resources, 2019,(1):187-194.doi:10.6046/gtzyyg.2019.01.25.
[5] 董建军, 梅媛, 李昕, 等. 高海拔排土场边坡安全稳定性SBAS-InSAR监测[J]. 中国安全科学学报, 2022, 32(1):92-101.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.013
Dong J J, Mei Y, Li X, et al. SBAS-InSAR monitoring of slope safety and stability of high altitude dumps[J]. China Safety Science Journal, 2022, 32(1):92-101.
doi: 10.16265/j.cnki.issn1003-3033.2022.01.013
[6] 李为乐, 陈俊伊, 陆会燕, 等. 泸定Ms6.8地震对海螺沟冰川的影响应急分析[J]. 武汉大学学报(信息科学版), 2023, 48(1):47-57.
Li W L, Chen J Y, Lu H Y, et al. Emergency analysis of the Impact of the Luding Ms6.8 earthquake on Hailuogou glacier[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):47-57.
[7] Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation of coseismic displacement fields using differential Radar interferometry:The Landers earthquake[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(b10):19617-19634.
[8] Han B, Yang C, Li Z, et al. Coseismic and postseismic deformation of the 2016 Mw6.0 Petermann ranges earthquake from satellite Radar observations[J]. Advances in Space Research, 2022, 69(1):376-385.
doi: 10.1016/j.asr.2021.10.043
[9] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7):1485-1519.
doi: 10.11947/j.AGCS.2022.20220224
Li Z H, Zhu W, Yu C, et al. Interferometric synthetic aperture Radar for deformation mapping:Opportunities,challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519.
[10] 赵翊含, 侯蒙京, 冯琦胜, 等. 基于Landsat8和随机森林的青海门源天然草地地上生物量遥感估算[J]. 草业学报, 2022, 31(7):1-14.
doi: 10.11686/cyxb2021454
Zhao Y H, Hou M J, Feng Q S, et al. Estimation of aboveground biomass in Menyuan grassland based on Landsat8 and random forest approach[J]. Acta Prataculturae Sinica, 2022, 31(7):1-14.
[11] 金鑫田, 王世杰, 姜鑫, 等. 2022年青海门源Mw6.9地震同震形变及断层滑动分布反演[J]. 地球物理学进展, 2022, 37(6):2267-2274.
Jin X T, Wang S J, Jiang X, et al. Coseismic deformation and slip distribution of the Mw6.9 Menyuan,Qinghai earthquake revealed by Sentinel-1A SAR imagery[J]. Progress in Geophysics, 2022, 37(6):2267-2274.
[12] 刘庆宇, 马瑛, 程莉. 青海门源县土壤质量地球化学评价[J]. 地质与勘探, 2022, 58(3):609-618.
Liu Q Y, Ma Y, Cheng L. Geochemical evaluation of soil quality in Menyuan County of Qinghai Province[J]. Geology and Exploration, 2022, 58(3):609-618.
[13] 姜程, 霍艾迪, 朱兴华, 等. 黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J]. 自然灾害学报, 2019, 28(1):38-43.
Jiang C, Huo A D, Zhu X H, et al. Research status of loess hydraulic erosion-landslide-mudflow chain[J]. Journal of Natural Disasters, 2019, 28(1):38-43.
[14] 戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12):1778-1786,1796.
Dai K R, Zhuo G C, Xu Q, et al. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide,Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12):1778-1786,1796.
[15] Wright T J, Parsons B E, Lu Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):169-178.
[16] 杨旺, 何毅, 张立峰, 等. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.
Yang W, He Y, Zhang L F, et al. InSAR monitoring of 3D surface deformation in Jinchuan mining area,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.
[17] 韩守富, 褚洪义, 黄兆欢, 等. 基于升降轨InSAR矿区地表二维形变的获取[J]. 兰州大学学报(自然科学版), 2021, 57(1):47-53.
Han S F, Chu H Y, Huang Z H, et al. Two-dimensional deformation acquisition of mining area using the ascending and descending orbit InSAR[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(1):47-53.
[18] 高宏伟, 史先琳, 陈晨, 等. 云南漾濞地震地表二维形变提取[J]. 昆明理工大学学报(自然科学版), 2022, 47(2):57-64.
Gao H W, Shi X L, Chen C, et al. Two-dimensional surface deformation extraction of Yangbi earthquake in Yunnan[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2022, 47(2):57-64.
[19] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6):887-897.
Li Z H, Han B Q, Liu Z J, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan,Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University,2022, 47(6):887-897.
[20] 于仪, 李雪, 孙振, 等. 2022年青海门源地震震源机制与同震滑动分布研究[J]. 大地测量与地球动力学, 2023, 43(1):46-51.
Yu Y, Li X, Sun Z, et al. Investigation on focal mechanism and coseismic slip distribution for Menyuan earthquake in 2022[J]. Journal of Geodesy and Geodynamics, 2023, 43(1):46-51.
[21] 冯万鹏, 何骁慧, 张逸鹏, 等. 2022年青海门源Mw6.6地震的发震断层及孕震构造模式[J]. 科学通报, 2023, 68(z1):254-270.
Feng W P, He X H, Zhang Y P, et al. Seismic faults of the 2022 Mw6.6 Menyuan,Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin, 2023, 68(z1):254-270.
[22] Gao F, Zielke O, Han Z, et al. Faulted landforms,slip-rate,and tectonic implications of the eastern Lenglongling fault,northeastern Tibetan Plateau[J]. Tectonophysics, 2022, 823:229195.
doi: 10.1016/j.tecto.2021.229195
[23] 屈春燕, 单新建, 张国宏, 等. InSAR地震形变场与断层运动性质\走向及升降轨模式的关系研究[C]// 2014年中国地球科学联合学术年会——专题25: InSAR技术、 卫星热红外与地壳运动论文集, 2014:58-59.
Qu C Y, Shan X J, Zhang G H, et al. Study on the relationship between InSAR seismic deformation field and the nature of fault motion \ orientation and lift-track pattern[C]// 2014 China Joint Geoscience Annual Conference - Topic 25:InSAR Technology,Satellite Thermal Infrared and Crustal Motion Proceedings, 2014:58-59.
[24] 温少妍, 单新建, 张迎峰, 等. 基于InSAR的青海大柴旦地震三维同震形变场获取与震源特征分析[J]. 地球物理学报, 2016, 59(3):912-921.
doi: 10.6038/cjg20160313
Wen S Y, Shan X J, Zhang Y F, et al. Three-dimensional co-seismic deformation of the Da Qaidam,Qinghai earthquakes derived from D-InSAR data and their source features[J]. Chinese Journal of Geophysics, 2016, 59(3):912-921.
[25] 苏琦, 袁道阳, 谢虹. 祁连山东段石羊河流域及邻区地貌特征及其构造意义[J]. 地质论评, 2017, 63(1):7-20.
Su Q, Yuan D Y, Xie H. Geomorphic features of the Shiyang River drainage basin and adjacent area in eastern Qilian Mountains and its insight into tectonic implications[J]. Geological Review, 2017, 63(1):7-20.
[26] 赵凌强, 孙翔宇, 詹艳, 等. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报, 2022, 65(4):1536-1546.
Zhao L Q, Sun X Y, Zhan Y, et al. The seismogenic model of the Menyuan MS6.9 earthquake on January 8,2022,Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics, 2022, 65(4):1536-1546.
[27] Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan Fault,Gansu (China)[J]. Geophysical Journal International, 1995, 120(3):599-645.
doi: 10.1111/j.1365-246X.1995.tb01842.x
[28] 焦其松, 姜文亮, 李强, 等. GF-7卫星图像快速解析青海门源Ms6.9级地震的地表破裂带[J]. 遥感学报, 2022, 26(9):1895-1908.
Jiao Q S, Jiang W L, Li Q, et al. Rapid emergency analysis of the surface rupture related to the Qinghai Menyuan Ms6.9 earthquake on January 8,2022,using GF-7 satellite images[J]. National Remote Sensing Bulletin, 2022, 26(9):1895-1908.
doi: 10.11834/jrs.20222043
[29] 郭鹏, 韩竹军, 安艳芬, 等. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学, 2017, 47(5):617-630.
Guo P, Han Z J, An Y F, et al. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Scientia Sinica(Tarrae), 2017, 47(5):617-630.
[1] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[2] 于冰, 王冰, 刘国祥, 张过, 胡云亮, 胡金龙. 融合DT和SDFPT的时序InSAR矿区形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 14-25.
[3] 明小勇, 田义超, 张强, 陶进, 张亚丽, 林俊良. 基于Sentinel-1A钦防地区地面沉降监测与分析[J]. 自然资源遥感, 2024, 36(1): 35-48.
[4] 赵霞, 马新岩, 余虔, 王招冰. 高分辨率InSAR技术在北京大兴国际机场形变监测中的应用[J]. 自然资源遥感, 2024, 36(1): 49-57.
[5] 肖晖, 李惠堂, 顾约翰, 盛庆红. 质量引导下的最小二乘相位解缠算法[J]. 自然资源遥感, 2023, 35(4): 25-33.
[6] 易邦进, 黄成, 傅涛, 孙技星, 朱宝权, 钟成. 基于SBAS-InSAR 技术的中缅边境山区地质灾害隐患探测[J]. 自然资源遥感, 2023, 35(4): 186-191.
[7] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[8] 王宁, 姜德才, 郑向向, 钟昶. 基于多源异构数据斜坡地质灾害隐患易发性评价——以深圳市龙岗区为例[J]. 自然资源遥感, 2023, 35(4): 122-129.
[9] 姜德才, 郑向向, 王宁, 肖春蕾, 朱振洲. 时序InSAR技术在珠三角地区地质灾害隐患识别中的应用[J]. 自然资源遥感, 2023, 35(3): 292-301.
[10] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[11] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[12] 刘辉, 徐心月, 陈蜜, 陈富龙, 丁瑞力, 刘菲. 秦皇岛段明长城时序InSAR遥感动态监测[J]. 自然资源遥感, 2023, 35(2): 202-211.
[13] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[14] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[15] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发