Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 193-200    DOI: 10.6046/zrzyyg.2023164
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于BDANet的地震灾害建筑物损毁评估
赵金玲1(), 黄健1, 梁梓君1, 赵学丹1, 靳涛1, 葛行行1, 魏晓燕3, 邵远征2
1.中国石油新疆油田分公司数据公司,克拉玛依 834000
2.武汉大学地球空间信息技术协同创新中心,武汉 430079
3.云南省测绘资料档案馆(云南省基础地理信息中心),昆明 650034
BDANet-based assessment of building damage from earthquake disasters
ZHAO Jinling1(), HUANG Jian1, LIANG Zijun1, ZHAO Xuedan1, JIN Tao1, GE Hanghang1, WEI Xiaoyan3, SHAO Yuanzheng2
1. Data Company of Xinjiang Oilfield Company, Karamay 834000, China
2. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
3. Yunnan Provincial Archives of Surveying and Mapping (Yunnan Provincial Geomatics Centre), Kunming 650034, China
全文: PDF(4785 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

破坏性地震建筑物损毁快速评估是震后科学评估的决策依据与技术保障,对于人道主义救援和应急响应具有重要意义。鉴于现有遥感影像震后建筑物损毁大多基于灾前灾后图像分割来完成,对于震后建筑物数量难以快速统计,文章以U-Net深度卷积神经网络为主体模型,提出一种3阶段的BDANet(building damage assessment convolutional neural network)震后建筑物损毁信息评估与预测一体化网络框架。首先,利用U-Net的编码-解码网络结构提取建筑物位置信息; 其次,通过灾前灾后影像训练建筑物损毁评估部分,对建筑物分割结果进行损毁定位与等级评估; 最后,对不同等级的损毁建筑物数量进行预测,为灾后救援与灾后重建提供数据支撑。并以2017年墨西哥中部莫雷洛斯州发生的7.1级地震与2023年土耳其发生的7.8级地震为例展开研究,实验对震后建筑物损毁等级进行评估及统计,验证了该文方法的准确性与可靠性,相关实验结果可为灾后风险评估提供及时、准确的数据支撑和技术保障。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵金玲
黄健
梁梓君
赵学丹
靳涛
葛行行
魏晓燕
邵远征
关键词 遥感影像地震灾害建筑物损毁损毁评估U-Net    
Abstract

The rapid assessment of building damage following destructive earthquakes serves as a critical foundation for decision-making and technical guarantee in post-earthquake scientific evaluations, holding great significance in humanitarian aid and emergency response. This study aims to overcome the challenge in rapidly quantifying the number of buildings affected. Considering that most existing post-earthquake building damage assessments based on remote sensing images rely on pre- and post-disaster image segmentation, this study, by using the U-Net deep convolutional neural network as the main model, introduced a three-stage convolutional neural network for building damage assessment (BDANet) framework that integrates assessment and prediction for post-earthquake building damage information. First, the encoder-decoder network structure of U-Net was used to extract building location information. Second, building damage was assessed using pre- and post-disaster images to localize and grade damage in the image segmentation results. Finally, the number of buildings damaged at various levels was predicted to support post-disaster rescue and reconstruction efforts. The study evaluated and quantified the levels of post-earthquake building damage in the M7.1 earthquake in Morelos State, central Mexico in 2017 and the M7.8 earthquake in Türkiye in 2023, confirming the accuracy and reliability of the proposed method. The experimental findings provide timely and precise data and technical support for post-disaster risk assessment.

Key wordsremote sensing image    earthquake disaster    building damage    damage assessment    U-Net
收稿日期: 2023-06-06      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金“孟中缅印经济走廊公路网时空风险评估与归因”(42061074);国家重点研发计划“面向对地观测的Web格网服务、标准及其互操作应用展示”(2019YFE0127100)
作者简介: 赵金玲(1983-),男,高级工程师,主要从事油气田企业数字化转型、工业互联网平台、地理信息系统研究与应用工作。Email: zhaojinl@petrochina.com.cn
引用本文:   
赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
ZHAO Jinling, HUANG Jian, LIANG Zijun, ZHAO Xuedan, JIN Tao, GE Hanghang, WEI Xiaoyan, SHAO Yuanzheng. BDANet-based assessment of building damage from earthquake disasters. Remote Sensing for Natural Resources, 2024, 36(4): 193-200.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023164      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/193
数据名称 数据来源 波段数 空间分
辨率/m
图像大
小/像素
墨西哥灾前灾后影像 xBD数据集 3 0.8 1 024×1 024
土耳其灾前灾后影像 WorldView-2 3 0.3 17 408×17 408
Tab.1  地震影像数据源信息
Fig.1  部分标注图像示例
Fig.2  建筑物损毁等级评估与预测网络结构
Fig.3  地震灾害图像与标注的可视化
建筑物提取网络 损毁等级预测网络
网络层 特征图尺寸 卷积核 网络层 特征图大小 网络层 特征图尺寸 卷积核
灾前图像输入 1 024×1 024×3 - 灾前图像输入 1 024×1 024×3 灾后图像输入 1 024×1 024×3 -
conv1-1 512×512×64 5×5 conv2-1 512×512×64 conv3-1 512×512×64 5×5
conv1-2 256×256×256 3×3 conv2-2 256×256×256 conv3-2 256×256×256 3×3
conv1-3 128×128×512 3×3 conv2-3 128×128×512 conv3-3 128×128×512 3×3
conv1-4 64×64×1 024 3×3 conv2-4 64×64×1 024 conv3-4 64×64×1 024 3×3
conv1-5 32×32×2 048 3×3 conv2-5 32×32×2 048 conv3-5 32×32×2 048 3×3
deconv1-1 64×64×1 024 3×3 deconv2-1 64×64×1 024 deconv3-1 64×64×1 024 3×3
deconv1-2 128×128×512 3×3 deconv2-2 128×128×512 deconv3-2 128×128×512 3×3
deconv1-3 256×256×192 3×3 deconv2-3 256×256×192 deconv3-3 256×256×192 3×3
deconv1-4 512×512×32 3×3 deconv2-4 512×512×32 deconv3-4 512×512×64 3×3
输出 1 024×1 024×1 - - - 输出 1 024×1 024×5 -
Tab.2  模型参数
Tab.3  建筑物损毁评估结果
方法 等级 数据1 数据2 数据3 数据4
U-Net 一般损毁等级 147 35 50 43
较重损毁等级 0 0 0 0
严重损毁等级 0 0 1 1
特别严重损毁等级 0 0 2 2
BDANet 一般损毁等级 135 44 48 50
较重损毁等级 12 0 2 0
严重损毁等级 1 0 3 3
特别严重损毁等级 0 0 0 2
Tab.4  实验结果统计
[1] He Y, Wang J, Liao C, et al. MS4D-net:Multitask-based semi-supervised semantic segmentation framework with perturbed dual mean teachers for building damage assessment from high-resolution remote sensing imagery[J]. Remote Sensing, 2023, 15(2):478.
[2] Shen Y, Zhu S, Yang T, et al. BDANet:Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5402114.
[3] 眭海刚, 刘超贤, 黄立洪, 等. 遥感技术在震后建筑物损毁检测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(7):1008-1019.
Sui H G, Liu C X, Huang L H, et al. Application of remote sensing technology in earthquake-induced building damage detection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1008-1019.
[4] Yang W, Zhang X, Luo P. Transferability of convolutional neural network models for identifying damaged buildings due to earthquake[J]. Remote Sensing, 2021, 13(3):504.
[5] 吴鹏天昊, 吴立新, 沈永林, 等. 基于高分影像纹理分维变化的灾害自动识别方法[J]. 地理与地理信息科学, 2012, 28(2):9-13.
Wu P T H, Wu L X, Shen Y L, et al. Disaster auto-recognition method based on HSR-image’s texture fractal monotonous change[J]. Geography and Geo-Information Science, 2012, 28(2):9-13.
[6] Cheng Q, Tian Y, Lu X, et al. Near-real-time prompt assessment for regional earthquake-induced landslides using recorded ground motions[J]. Computers & Geosciences, 2021, 149:104709.
[7] 龚燃, 刘韬. 2018年国外对地观测卫星发展综述[J]. 国际太空, 2019(2):48-55.
Gong R, Liu T. Summary of the development of foreign earth observation satellites in 2018[J]. Space International, 2019(2):48-55.
[8] Tang X, Gao X, Cao H, et al. The China ZY3-03 mission:Surveying and mapping technology for high-resolution remote sensing satellites[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(3):8-17.
[9] 宫鹏. 对遥感科学应用的一点看法[J]. 遥感学报, 2019, 23(4):567-569.
Gong P. Towards more extensive and deeper application of remote sensing[J]. National Remote Sensing Bulletin, 2019, 23(4):567-569.
[10] Gupta R, Goodman B, Patel N, et al. Creating xBD:A dataset for assessing building damage from satellite imagery[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Re-cognition Workshops.IEEE, 2019:10-17.
[11] Faisal A, Khan H. Application of GIS and remote sensing in disaster management:A critical review of flood management[C]// International Conference on Disaster Risk Mitigation. 2018.
[12] Song D, Tan X, Wang B, et al. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-da-maged buildings using single-phase remote sensing imagery[J]. International Journal of Remote Sensing, 2020, 41(3):1040-1066.
[13] Chen C, Fu J, Gai Y, et al. Damaged bridges over water:Using high-spatial-resolution remote-sensing images for recognition,detection,and assessment[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):69-85.
[14] Yeom J, Han Y, Chang A, et al. Hurricane building damage assessment using post-disaster UAV data[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan.IEEE, 2019:9867-9870.
[15] Tong X, Hong Z, Liu S, et al. Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery:A case study of the May 2008 Wenchuan earthquake[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68:13-27.
[16] Dou M, Chen J, Chen D, et al. Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images[J]. Future Generation Computer Systems, 2014, 37:367-377.
[17] Liu S, Marinelli D, Bruzzone L, et al. A review of change detection in multitemporal hyperspectral images:Current techniques,applications,and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):140-158.
[18] Khan S H, He X, Porikli F, et al. Forest change detection in incomplete satellite images with deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5407-5423.
[19] Wang Q, Yuan Z, Du Q, et al. GETNET:A general end-to-end 2-D CNN framework for hyperspectral image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):3-13.
[20] Zhan Y, Fu K, Yan M, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geo-science and Remote Sensing Letters, 2017, 14(10):1845-1849.
[21] Gao F, Dong J, Li B, et al. Automatic change detection in synthetic aperture radar images based on PCANet[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1792-1796.
[22] Myint S W, Yuan M, Cerveny R S, et al. Categorizing natural disaster damage assessment using satellite-based geospatial techniques[J]. Natural Hazards and Earth System Sciences, 2008, 8(4):707-719.
[23] Ma H, Liu Y, Ren Y, et al. Improved CNN classification method for groups of buildings damaged by earthquake,based on high resolution remote sensing images[J]. Remote Sensing, 2020, 12(2):260.
[24] Nie Y, Zeng Q, Jiao J. Building damage assessment from post-event polsar image based on opce and template matching[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan.IEEE, 2019:9402-9405.
[25] Bialas J, Oommen T, Rebbapragada U, et al. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning[J]. Journal of Applied Remote Sensing, 2016, 10(3):036025.
[26] Cooner A J, Shao Y, Campbell J B. Detection of urban damage using remote sensing and machine learning algorithms:Revisiting the 2010 Haiti earthquake[J]. Remote Sensing, 2016, 8(10):868.
[27] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.
[28] Xu J Z, Lu W, Li Z, et al. Building damage detection in satellite imagery using convolutional neural networks[J/OL]. arXiv, 2019(2019-10-14)[2023-09-28]. https://arxiv.org/abs/1910.06444.
[29] Weber E, Kané H. Building disaster damage assessment in satellite imagery with multi-temporal fusion[J/OL]. arXiv, 2020 (2020-04-12)[2023-09-28]. https://arxiv.org/abs/2004.05525.
[30] Hao H, Baireddy S, Bartusiak E R, et al. An attention-based system for damage assessment using satellite imagery[C]// IGARSS 2021 IEEE International Geoscience and Remote Sensing Symposium.Brussels,Belgium.IEEE, 2021:4396-4399.
[31] Gupta R, Hosfelt R, Sajeev S, et al. xBD:A dataset for assessing building damage from satellite imagery[J/OL]. arXiv, 2019 (2019-10-14)[2023-09-28]. https://arxiv.org/abs/1911.09296.
[32] Yun S, Han D, Chun S, et al. CutMix:Regularization strategy to train strong classifiers with localizable features[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South).IEEE, 2019:6022-6031.
[33] Sepúlveda J, Velastın S A. F1 score assesment of Gaussian mixture background subtraction algorithms using the MuHAVi dataset[C]// 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15).London.London:IET, 2015:1-6.
[34] Pereira R B, Plastino A, Zadrozny B, et al. Correlation analysis of performance measures for multi-label classification[J]. Information Processing & Management, 2018, 54(3):359-369.
[1] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[2] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
[3] 于淼, 荆虹波, 王翔, 李兴久. 基于深度特征的多方向目标检测研究[J]. 自然资源遥感, 2024, 36(3): 267-271.
[4] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[5] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[6] 李婉悦, 娄德波, 王成辉, 刘欢, 张长青, 范莹琳, 杜晓川. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2): 89-96.
[7] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[8] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[9] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[10] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[11] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[12] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[13] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[14] 唐文魁, 俞露, 周伟奇, 岳隽, 周正. 基于长时间序列遥感数据的深圳景观连通性动态变化研究[J]. 自然资源遥感, 2022, 34(3): 97-105.
[15] 程滔. 一种与遥感影像同步纠正的矢量地理信息采集方法[J]. 自然资源遥感, 2022, 34(3): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发