Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 201-209    DOI: 10.6046/zrzyyg.2023147
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
结合桥梁难分样本优化的大清河流域水坝遥感检测
郭勇1(), 张琳翔1, 许泽宇2, 蔡中祥1
1.信息工程大学地理空间信息学院,郑州 450052
2.中国科学院空天信息创新研究院国家遥感应用工程技术研究中心, 北京 100101
Remote sensing-based detection of dams in the Daqing River basin through optimization using hard negative samples of bridges
GUO Yong1(), ZHANG Linxiang1, XU Zeyu2, CAI Zhongxiang1
1. Geospatial Information Institute, Information Engineering University, Zhengzhou 450052,China
2. National Engineering Research Center for Geomatics, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(5973 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水坝的检测对于城市规划、生态环境评估等有着重要意义。目前基于遥感的水坝检测研究主要是基于样本集的算法改进或在小区域上的检测,缺乏在大尺度地学区域的实践应用。而在大区域中,水坝分布稀疏,地表存在更多的桥梁等地物会对水坝的检测形成显著干扰。为应对这一问题,该文以大清河流域为例,研究大尺度区域内的水坝遥感检测。该文研究主要分为2个阶段,第一阶段是将容易与水坝混淆的桥梁作为难分负样本(即容易产生假阳性的样本)参加训练,基于DIOR公开数据集改进适合于水坝提取的神经网络结构; 第二阶段是基于优化后的网络以及大区域多源样本数据进行微调训练获取模型,并实现大清河区域的水坝检测。优化后的模型在第一阶段测试中水坝检测F1分数为0.783,在第二阶段大清河流域检测得到了330处水坝,其结果与现有公开的水坝空间分布数据集GRandD相符,且更为详细。结果表明,结合桥梁样本优化训练后的模型可以有效避免对桥梁的误提取,从而提高检测精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭勇
张琳翔
许泽宇
蔡中祥
关键词 水坝难分负样本大清河流域CenterNet网络目标检测    
Abstract

The dam detection is crucial for urban planning, ecological environment assessment, and other purposes. Currently, research on remote-sensing-based dam detection mainly focuses on algorithm improvements using sample sets or small-scale localized detections, with a significant gap in practical applications over large-scale geographical regions. In large-scale regions, the sparse distribution of dams, along with the presence of more surface features such as bridges, significantly interferes with dam detection. To address this issue, this study explored the Daqing River basin as a case study to investigate remote sensing methods for dam detection in large-scale regions. This study consisted of two main phases. In the first stage, bridges, which are easily confused with dams, are considered hard negative samples (i.e., samples prone to false positives) for training. The neural network structure suitable for dam detection was improved based on the DIOR open dataset. In the second phase, the detection model was developed through fine-scale tuning using the optimized network alongside multi-source sample data from the large Daqing River basin. Concurrently, dams within the Daqing River region were detected. The optimized model yielded dam detection F1 of 0.783 in the first phase of tests and identified 330 dams in the Daqing River basin during the second phase. These results align with the existing publicly available dam spatial distribution dataset GRandD, even providing more details. The results of this study indicate that the model, optimized using bridge samples, can effectively mitigate the incorrect extraction of bridges, thereby improving detection accuracy.

Key wordsdam    hard negative samples    Daqing River basin    CenterNet    object detection
收稿日期: 2023-05-23      出版日期: 2024-12-23
ZTFLH:  TP751  
基金资助:新疆维吾尔自治区重点研发任务专项“强震次生地质灾害承灾体识别与受损评估研究”(2022B03001-3);新疆第三次科学考察项目“新疆遥感动态监测系统及时序信息反演”(2021xjkk1403)
作者简介: 郭勇(1983-),男,博士,讲师,主要从事目标智能识别研究。Email: gy86322@sina.com
引用本文:   
郭勇, 张琳翔, 许泽宇, 蔡中祥. 结合桥梁难分样本优化的大清河流域水坝遥感检测[J]. 自然资源遥感, 2024, 36(4): 201-209.
GUO Yong, ZHANG Linxiang, XU Zeyu, CAI Zhongxiang. Remote sensing-based detection of dams in the Daqing River basin through optimization using hard negative samples of bridges. Remote Sensing for Natural Resources, 2024, 36(4): 201-209.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023147      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/201
Fig.1  大清河流域影像及位置
Fig.2  第二阶段使用的3种样本数据示意图
Fig.3  存在大目标的桥梁和水坝样本数据示意图
Fig.4  U-CenterNet结构示意图
Fig.5  空间注意力机制示意图
Fig.6  特征拼接融合过程示意图
Fig.7  训练中各模型Loss值随epoch的变化
深度学习网络 类别 精确度 召回率 F1分数

Faster R-CNN
桥梁 0.540 0.646 0.588
水坝 0.648 0.896 0.752

YOLO v3
桥梁 0.578 0.780 0.664
水坝 0.627 0.814 0.708

YOLO v7x
桥梁 0.662 0.517 0.541
水坝 0.702 0.803 0.780

CenterNet
桥梁 0.548 0.797 0.649
水坝 0.577 0.765 0.658

U-CenterNet
桥梁 0.639 0.775 0.700
水坝 0.773 0.793 0.783
Tab.1  DIOR数据集检测精度
Tab.2  各网络结构典型检测结果对比示例
Fig.8  典型问题示意图
Fig.9  大清河流域水坝检测结果示意图
Fig.10  本文未检测到的CRD水库区示意图
[1] 许莹, 张友静, 张琴. 基于高分影像的水利空间要素提取规则集构建[J]. 地理空间信息, 2016, 14(5):71-74,7.
Xu Y, Zhang Y J, Zhang Q. Rule sets building of water conservancy facilities spatial element extraction based on high resolution remote sensing image[J]. Geospatial Information, 2016, 14(5):71-74,7.
[2] 朱然. 大数据量复杂背景下桥梁水坝目标快速识别[D]. 成都: 电子科技大学, 2015.
Zhu R. Fast recognition of bridge and dam in complex background through masses of data[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
[3] 孙宇, 黄亮, 赵俊三, 等. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2):97-104.doi:10.6046/zrzyyg.2021130.
Sun Y, Huang L, Zhao J S, et al. High spatial resolution automatic detection of bridges with high spatial resolu tion remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2):97-104.doi:10.6046/zrzyyg.2021130.
[4] 邱丹丹, 马洪超, 杨耘, 等. 基于多源卫星图像融合的水坝检测方法的研究[J]. 遥感学报, 2006, 10(4):449-455.
Qiu D D, Ma H C, Yang Y, et al. A study of dam detection based on multi-source satellite images fusion[J]. National Remote Sensing Bulletin, 2006, 10(4):449-455.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:779-788.
[6] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. arXiv, 2018. http://arxiv.org/abs/1804.02767.pdf.
[7] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot MultiBox detector[C]// European Conference on Computer Vision.Cham:Springer, 2016:21-37.
[8] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[9] 郭进祥, 刘立波, 徐峰, 等. 基于YOLO v3的机场场面飞机检测方法[J]. 激光与光电子学进展, 2019, 56(19):191003.
Guo J X, Liu L B, Xu F, et al. Airport scene aircraft detection method based on YOLO v3[J]. Laser & Optoelectronics Progress, 2019, 56(19):191003.
[10] 戴伟聪, 金龙旭, 李国宁, 等. 遥感图像中飞机的改进YOLOv3实时检测算法[J]. 光电工程, 2018, 45(12):180350.
Dai W C, Jin L X, Li G N, et al. Real-time airplane detection algorithm in remote-sensing images based on improved YOLOv3[J]. Opto-Electronic Engineering, 2018, 45(12):180350.
[11] 王文胜. 宽幅光学遥感图像舰船飞机目标检测识别技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
Wang W S. Research on technology of ship and aircraft targets recognition from large-field optical remote sensing image[D]. Changchun: Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, 2018.
[12] 王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029-1039.
Wang Y Q, Ma L, Tian Y. State-of-the-art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9):1029-1039.
[13] 种劲松. 合成孔径雷达图像舰船目标检测算法与应用研究[D]. 北京: 中国科学院研究生院(电子学研究所), 2002.
Zhong J S. A study on the algorithm of ship target detection in SAR imagery and its applications[D]. Beijing: Graduate School of Chinese Academy of Sciences(Institute of Electrics), 2002.
[14] 孙秉义, 文珊珊, 吴昊, 等. 基于深度学习的高分辨率遥感图像车辆检测[J]. 东华大学学报(自然科学版), 2018, 44(4):520-525.
Sun B Y, Wen S S, Wu H, et al. Vehicle detection in high-resolution remote sensing images based on deep learning[J]. Journal of Donghua University (Natural Science), 2018, 44(4):520-525.
[15] 冯素婷, 盛智勇, 后兴海, 等. 基于旋转框回归的YOLOV5遥感图像车辆目标检测[C]// 第十五届全国信号和智能信息处理与应用学术会议论文集. 北京: 计算机工程与应用, 2022:4.
Feng S T, Sheng Z Y, Hou X H, et al. Vehicle target detection in YOLOV5 remote sensing image based on rotating box regression[C]// Anthology of the 15th National Academic Conference on Signal and Intelligent Information Processing and Application, Beijing: Computer Engineering and Applications, 2022:4.
[16] 刘康. 高分遥感影像建筑目标检测技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2021.
Liu K. Research on building detection technology of the highresolution remote sensing images[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences, 2021.
[17] 王玉龙, 蒲军, 赵江华, 等. 基于生成对抗网络的地面新增建筑检测[J]. 计算机应用, 2019, 39(5):1518-1522.
doi: 10.11772/j.issn.1001-9081.2018102083
Wang Y L, Pu J, Zhao J H, et al. Detection of new ground buildings based on generative adversarial network[J]. Journal of Computer Applications, 2019, 39(5):1518-1522.
doi: 10.11772/j.issn.1001-9081.2018102083
[18] Jing M, Cheng L, Ji C, et al. Detecting unknown dams from high-resolution remote sensing images:A deep learning and spatial analysis approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104:102576.
[19] 许泽宇, 沈占锋, 李杨, 等. 结合E-YOLO和水体指数约束的大面幅影像水利设施检测[J]. 遥感学报, 2022, 26(10):2083-2093.
Xu Z Y, Shen Z F, Li Y, et al. Detection of water conservancy facilities in large-format image combining E-YOLO algorithm and NDWI constraint[J]. National Remote Sensing Bulletin, 2022, 26(10):2083-2093.
[20] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.ACM, 2014:580-587.
[21] 张烨, 许艇, 冯定忠, 等. 基于难分样本挖掘的快速区域卷积神经网络目标检测研究[J]. 电子与信息学报, 2019, 41(6):1496-1502.
Zhang Y, Xu T, Feng D Z, et al. Research on faster RCNN object detection based on hard example mining[J]. Journal of Electronics & Information Technology, 2019, 41(6):1496-1502.
[22] 许悦雷, 朱明明, 马时平, 等. 迁移学习结合难分样本挖掘的机场目标检测[J]. 西安电子科技大学学报, 2018, 45(5):190-196.
Xu Y L, Zhu M M, Ma S P, et al. Airport object detection combining transfer learning and hard example mining[J]. Journal of Xidian University, 2018, 45(5):190-196.
[23] 马广阔. 遥感图像桥梁目标检测方法研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
Ma G K. Research on bridge target detection method in remote sensing image[D]. Hohhot: Inner Mongolia University of Tehchnology, 2021.
[24] Zhou X, Wang D, Krähenbühl P. Objects as points[J/OL]. arXiv, 2019. http://arxiv.org/abs/1904.07850.pdf.
[25] 李硕, 沈占锋, 刘克俭, 等. 大清河流域土地利用变化的地形梯度效应分析[J]. 农业工程学报, 2021, 37(5):275-284.
Li S, Shen Z F, Liu K J, et al. Analysis of terrain gradient effects of land use change in Daqing River basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5):275-284.
[26] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
[27] Lehner B, Liermann C R, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011, 9(9):494-502.
[28] Song C, Fan C, Zhu J, et al. A comprehensive geospatial database of nearly 100 000 reservoirs in China[J]. Earth System Science Data, 2022, 14(9):4017-4034.
[29] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4):541-551.
[30] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, 2014(2014-09-04)[2023-05-23]. https://arxiv.org/abs/1409.1556.
[31] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer, 2015:234-241.
[32] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
[33] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[34] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver,BC,Canada.IEEE, 2023:7464-7475.
[35] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile.IEEE, 2015:1440-1448.
[36] 李大伟. 固定翼无人机地面车辆目标自动检测与跟踪[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2017.
Li D W. Automatic vehicle detection and tracking in aerial images by fixed-wing UAV[D]. Beijing: National Space Science Center,Chinese Academy of Sciences, 2017.
[37] 王金传, 谭喜成, 王召海, 等. 基于Faster R-CNN深度网络的遥感影像目标识别方法研究[J]. 地球信息科学学报, 2018, 20(10):1500-1508.
doi: 10.12082/dqxxkx.2018.180237.
Wang J C, Tan X C, Wang Z H, et al. Faster R-CNN deep learning network based object recognition of remote sensing image[J]. Journal of Geo-Information Science, 2018, 20(10):1500-1508.
[1] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[2] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[3] 孙宇, 黄亮, 赵俊三, 常军, 陈朋弟, 成飞飞. 结合随机擦除和YOLOv4的高空间分辨率遥感影像桥梁自动检测[J]. 自然资源遥感, 2022, 34(2): 97-104.
[4] 陈静, 陈静波, 孟瑜, 邓毓弸, 节永师, 张懿. 尺度和密度约束下基于YOLOv3的风电塔架遥感检测方法[J]. 自然资源遥感, 2021, 33(3): 54-62.
[5] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[6] 谭熊, 王晶磊, 孙一帆. 基于特征的无人机载视频运动目标快速检测方法[J]. 国土资源遥感, 2021, 33(2): 27-32.
[7] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[8] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[9] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[10] 李想, 杨灿坤, 周春平, 李小娟, 张可. 高分辨率光学卫星图像目标运动信息提取研究综述[J]. 国土资源遥感, 2019, 31(3): 1-9.
[11] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[12] 成宝芝. 高光谱图像异常目标检测算法研究与进展[J]. 国土资源遥感, 2014, 26(3): 1-7.
[13] 张国英, 程益钰, 李峰, 宋科科. 资源三号卫星影像中线性目标的检测技术[J]. 国土资源遥感, 2014, 26(2): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发