Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 22-32    DOI: 10.6046/zrzyyg.2022010
  综述 本期目录 | 过刊浏览 | 高级检索 |
面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究
吕雅楠1(), 朱红1(), 孟健2, 崔成玲3, 宋其淇1
1.防灾科技学院生态环境学院,廊坊 065201
2.防灾科技学院地球科学学院,廊坊 065201
3.北京吉威空间信息股份有限公司,北京 100043
A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images
LYU Yanan1(), ZHU Hong1(), MENG Jian2, CUI Chengling3, SONG Qiqi1
1. College of Ecology Environment, Institute of Disaster Prevention, Langfang 065201, China
2. College of Earth Sciences, Institute of Disaster Prevention, Langfang 065201, China
3. Beijing Geoway Information-Technology Co., Ltd., Beijing 100043, China
全文: PDF(5366 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

车辆检测问题是计算机视觉和摄影测量与遥感领域的研究热点。随着深度学习技术的发展,遥感影像车辆检测已在智慧城市和智能交通等领域展开应用。文章系统归纳了现有的基于深度学习模型的遥感影像车辆检测算法,着重从单阶段与双阶段的车辆检测算法进行了归类、分析及比较; 重点梳理了大幅面、复杂背景环境下车辆检测的关键技术,分析主流深度学习模型应用于遥感影像车辆检测的优缺点。利用DOTA和DIOR数据集对YOLOv5,Faster-RCNN,FCOS和SSD算法进行评估,在DOTA数据集上,车辆检测精度分别为0.695,0.410,0.370和0.251; 在DIOR数据集上,车辆检测精度分别为0.566,0.243,0.231和0.154。实验结果表明,目标尺度较小仍是制约遥感影像车辆检测性能的主要因素,深度学习模型应用于小目标检测存在较大的提升空间。最后,基于公开数据集与已有研究算法分析的基础上,给出大幅面复杂背景下遥感影像车辆检测的解决方法及发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕雅楠
朱红
孟健
崔成玲
宋其淇
关键词 遥感影像车辆检测深度学习分析方法    
Abstract

Vehicle detection is a hot research topic in the fields of computer vision, photogrammetry, and remote sensing. With the continuous development of deep learning technology, vehicle detection based on remote sensing images has been applied in fields such as smart city construction and intelligent transportation. This study systematically summarized existent vehicle detection algorithms based on remote sensing images and deep learning models and highlighted the classification, analysis, and comparison of one-stage and two-stage vehicle detection algorithms. Moreover, this study summarized the key technologies of vehicle detection in large-scale and complex backgrounds and analyzed the advantages and disadvantages of mainstream deep learning models of vehicle detection based on remote sensing images. Experiments were conducted to evaluate the YOLOv5, Faster-RCNN, FCOS, and SSD algorithms using DOTA and DIOR datasets. The vehicle detection precision based on the DOTA dataset was 0.695, 0.410, 0.370, and 0.251, respectively and that based on the DIOR dataset was 0.566, 0.243, 0.231, and 0.154, respectively. The experimental results show that the small target scale is still the main factor restricting the vehicle detection performance based on remote sensing images and that the application of deep learning models to the detection of small targets is to be further improved. Finally, based on public datasets and the analysis of existing algorithms, this study proposed the solution and development trend of vehicle detection based on remote sensing images in large-scale and complex backgrounds.

Key wordsremote sensing image    vehicle detection    deep learning    analysis method
收稿日期: 2022-01-12      出版日期: 2022-12-27
ZTFLH:  P237  
基金资助:河北省自然科学基金项目“面向凝视卫星视频图像超分辨率重建的智能化车辆检测方法研究”(D2020512001);中央高校基本科研业务费项目“基于凝视卫星视频图像的超分辨率重建研究”(ZY20200202);廊坊市科学技术研究与发展计划自筹经费项目“面向多级金字塔式非线性细节提升的超分辨率重建研究”(2021013164)
通讯作者: 朱 红(1989-),女,博士,副教授,主要从事目标检测、遥感图像超分辨率重建、卫星姿态等方面的研究。Email: zhuhong19890408@163.com
作者简介: 吕雅楠(1997-),男,硕士研究生,主要从事遥感图像识别方面的研究。Email: 13835436519@163.com
引用本文:   
吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022010      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/22
模型 优点 缺点 检测精度
GoogLeNet[12] 引入超分辨率重建算法加强车辆特征信息 对密集目标检测效果差 自制遥感影像数据集上精度为0.75
AVPN+VALN[13] 提出VALN网络实现车辆方向信息检测,融合深浅层特征信息以提高小目标检测精度 网络结构复杂,训练检测时间成本较高 DLR[14]数据集上精度为0.92
ZF[15] 针对数据集自身特点,结合区域生成网络设置3种对应大小及比例的锚框,加快了检测速度 数据量小、来源单一,模型检测鲁棒性较差 自制遥感影像数据集上精度为0.88
DF-RCNN[16] 融合深浅层特征信息、引入可变形卷积和可变形感兴趣区域池化,改善密集区域小目标检测效果 网络计算量较大,检测耗时较长 自制Google Earth数据集上精度为
0.94
VGGNet[17] 网络层数可以随数据集图像大小进行调整 图像深层特征提取不充分,没有充分利用上下文语义信息 自制Google Earth数据集上精度为
0.89
VGG-16[18] 基于超像素分割提取道路区域进行车辆检测,缩小了检测范围 操作较为复杂,检测时间较长,对于非道路区域内车辆会造成漏检 DOTA[19]数据集上精度为0.73
SORCN[20] 加入道路区域分割提高检测精度 运行速度较慢,无法预测车辆方向信息,模型抗干扰性差,对于非道路区域内车辆无法检测 自制Google Earth数据集上精度为
0.96
Faster R-CNN++[21] 对遥感影像车辆进行多尺度融合及数据增强,提高了模型鲁棒性与小目标检测精度 检测速度较慢,无法实现车辆方向检测 DLR数据集上精度为0.57; Potsdam[22]数据集上精度为0.67; VEDAI[23]数据集上精度为0.458
Tab.1  双阶段遥感影像车辆目标检测对比
模型 优点 缺点 检测精度
YOLO[40] 基于K-means算法重新计算锚框大小,提高小目标检测精度 数据来源单一,难以应用于其他类型数据 自制Google Earth数据集上精度为
0.95
YOLT[41] 对遥感影像进行有重叠区域的裁剪,确保目标信息完整性 裁剪后的图像具有重叠区域,存在较多冗余计算 自制遥感影像数据集上精度为0.9
YOLOv3[42] 减少特征提取网络层数,增加精细输出特征图来检测小目标 数据集规模较小,鲁棒性较差 自制高分二号卫星影像数据集上精度为0.743
Oriented_SSD[43] 引入目标的角度偏移量,实现车辆角度信息预测 虽实现了角度信息的预测,但精度较低 DLR数据集上精度为0.86; VEDAI数据集上精度为0.8
Tab.2  单阶段遥感影像车辆目标检测对比
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像1 DOTA 111
检测数量: 11 检测数量: 34 检测数量: 89 检测数量: 110
影像2 DIOR 86
检测数量: 0 检测数量: 0 检测数量: 8 检测数量: 27
Tab.3  小尺度车辆目标检测结果对比
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像3 DOTA 493
检测数量: 3 检测数量: 95 检测数量: 119 检测数量: 358
影像4 DIOR 327
检测数量: 0 检测数量: 6 检测数量: 33 检测数量: 268
Tab.4  密集型小尺度车辆目标检测结果对比
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像5 DOTA 68
检测数量: 48 检测数量: 61 检测数量: 61 检测数量: 68
影像6 DIOR 78
检测数量: 0 检测数量: 9 检测数量: 30 检测数量: 78
Tab.5  多角度小尺度车辆目标检测结果对比
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像7 DOTA 40
检测数量: 6 检测数量: 4 检测数量: 30 检测数量: 32
影像8 DIOR 83
检测数量: 7 检测数量: 27 检测数量: 33 检测数量: 60
Tab.6  复杂背景下小尺度车辆目标检测结果对比
影像 数据集 目标
数量
SSD结果 FCOS结果 Faster-RCNN结果 YOLOv5结果
影像9 DOTA 26
检测数量: 0 检测数量: 7 检测数量: 16 检测数量: 24
影像10 DIOR 33
检测数量: 0 检测数量: 0 检测数量: 13 检测数量: 17
Tab.7  移动小尺度车辆目标检测结果对比
模型 输入大
小/像素
DOTA DIOR
AP 训练
时间/h
AP 训练
时间/h
SSD 800×800 0.251 31.245 0.154 21.135
FCOS 800×800 0.370 54.510 0.231 63.367
Faster-RCNN 800×800 0.410 96.617 0.243 129.617
YOLOv5 800×800 0.695 43.333 0.566 38.915
Tab.8  不同算法在公开数据集的检测结果对比
[1] 刘金明. 基于深度卷积神经网络的遥感图像中车辆检测方法研究[D]. 开封: 河南大学, 2020.
Liu J M. Research on vehicle detection method in remote sensing images based on deep convolution neural network[D]. Kaifeng: Henan University, 2020.
[2] 刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6):624-634.
Liu T Y, Li W G, Guan J H. Deep learning based object detection in optical remote sensing images:A survey[J]. Radio Communications Technology, 2020, 46(6):624-634.
[3] Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
doi: 10.1016/j.isprsjprs.2016.03.014
[4] 成喆, 吕京国, 白颖奇, 等. 结合RPN网络与SSD算法的遥感影像目标检测算法[J]. 测绘科学, 2021, 46(4):75-82,99.
Cheng Z, Lyu J G, Bai Y Q, et al. High-resolution remote sensing image object detection algorithm combining RPN network and SSD algorithm[J]. Science of Surveying and Mapping, 2021, 46(4):75-82,99.
[5] Alam M, Wang J F, Cong G, et al. Convolutional neural network for the semantic segmentation of remote sensing images[J]. Mobile Networks and Applications, 2021, 26:200-215.
doi: 10.1007/s11036-020-01703-3
[6] Ji H, Gao Z, Mei T, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4):676-680.
doi: 10.1109/LGRS.2019.2930308
[7] 张昭, 姚国愉, 李雪纯, 等. 基于改进Faster R-CNN算法的小目标车辆检测[J]. 科技创新与应用, 2021(4):28-32.
Zhang Z, Yao G Y, Li X C, et al. Small target vehicle detection based on improved Faster-RCNN algorithm[J]. Science and Technology Innovation and Application, 2021(4):28-32.
[8] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[9] 南晓虎, 丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020(s2):15-21.
Nan X H, Ding L. Overview of typical object detection algorithms based on deep learning[J]. Application Research of Computers, 2020(s2):15-21.
[10] Girshick R. Fast R-CNN[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015:1440-1448.
[11] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[12] 罗峰. 基于超分辨率迁移学习的遥感图像车辆检测[D]. 厦门: 厦门大学, 2017.
Luo F. Vehicle detection in remote sensing images based on super-resolution transfer learning[D]. Xiamen: Xiamen University, 2017.
[13] Deng Z P, Hao S, Zhou S L, et al. Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8):3652-3664.
doi: 10.1109/JSTARS.2017.2694890
[14] Liu K, Mattyus G. Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1938-1942.
doi: 10.1109/LGRS.2015.2439517
[15] 王雪, 隋立春, 李顶萌, 等. 区域卷积神经网络用于遥感影像车辆检测[J]. 公路交通科技, 2018, 35(3):103-108.
Wang X, Sui L C, Li D M, et al. Regional convolutional neural network for vehicle detection in remote sensing images[J]. Journal of Electronics and Information Technology, 2018, 35(3):103-108.
[16] 高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12):2812-2819.
Gao X, Li H, Zhang Y, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12):2812-2819.
[17] 阳理理. 基于人工神经网络的遥感图像车辆检测[D]. 南宁: 广西大学, 2018.
Yang L L. Vehicle detection based on artificial neural network in remote sensing images[D]. Nanning: Guangxi University, 2018.
[18] 孙秉义. 基于遥感图像处理的交通量检测与分析[D]. 上海: 上海交通大学, 2019.
Sun B Y. Traffic volume detection and analysis based on remote sensing images processing[D]. Shanghai: Shanghai Jiaotong University, 2019.
[19] Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2018:3974-3983.
[20] 黄国捷. 基于深度学习的遥感图像车辆目标检测[D]. 苏州: 苏州大学, 2019.
Huang G J. Vehicle target detection from remote sensing images based on deep learning[D]. Suzhou: Soochow University, 2019.
[21] Ji H, Gao Z, Mei T, et al. Improved Faster R-CNN with multiscale feature fusion and homography augmentation for vehicle detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11):1761-1765.
doi: 10.1109/LGRS.2019.2909541
[22] Rottensteiner F, Sohn G, Jung J, et al. The ISPRS benchmark on urban object classification and 3D building reconstruction[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,1-3:293-298.
[23] Razakarivony S, Jurie F. Vehicle detection in aerial imagery:A small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016, 34:187-203.
doi: 10.1016/j.jvcir.2015.11.002
[24] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683
[25] 梁哲恒, 黎宵, 邓鹏, 等. 融和多尺度特征注意力的融合遥感影像变化检测方法[J]. 测绘学报, 2022, 51(5):668-676.
Liang Z H, Li X, Deng P, et al. Remote sensing images change detection fusion method integrating multi-scale feature attention[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):668-676.
[26] Yang X, Sun H, Sun X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6:50839-50849.
doi: 10.1109/ACCESS.2018.2869884
[27] Fu Y, Wu F, Zhao J. Context-Aware and depth wise-based detection on orbit for remote sensing image[C]// 2018 24th International Conference on Pattern Recognition(ICPR).IEEE, 2018:1725-1730.
[28] Li Q, Mou L, Xu Q, et al. R3-Net:A deep network for multioriented vehicle detection in aerial images and videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):5028-5042.
doi: 10.1109/TGRS.2019.2895362
[29] Zhang Z H, Guo W W, Zhu S N, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1745-1749.
doi: 10.1109/LGRS.2018.2856921
[30] 林钊. 基于深度学习的遥感图像舰船目标检测与识别[D]. 长沙: 国防科技大学, 2018.
Lin Z. Ship detection and recognition in remote sensing images based on deep learning[D]. Changsha: National University of Defense Technology, 2018.
[31] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[32] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.
doi: 10.3778/j.issn.1002-8331.2012-0449
Xu D G, Wang L, Li F. A review of typical object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25.
[33] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:779-788.
[34] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2017:6517-6525.
[35] Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2019-12-25)[2021-12-29]. https://arxiv.org/abs/1804.02767 .
[36] Bochkovskiy A, Wang C Y, Liao H. YOLOv4:Optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2021-12/29]. https://arxiv.org/abs/2004.10934 .
[37] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[J]. Springer,Cham, 2016, 9905:21-37.
[38] Fu C, Liu W, Ranga A, et al. DSSD:Deconvolutional single shot detector[EB/OL].(2017-01-23)[2021-12/29]. https://arxiv.org/abs/1701.06659v1 .
[39] Tian Z, Shen C H, Chen H, et al. FCOS:Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE, 2020:9626-9635.
[40] 李圣琀, 邵峰晶. 基于深度学习的轻量遥感图像车辆检测模型[J]. 工业控制计算机, 2020, 33(6):66-69.
Li S H, Shao F J. Vehicle detection model of light weight remote sensing image based on deep learning[J]. Industrial Control Computer, 2020, 33(6):66-69.
[41] Etten A V. You only look twice:Rapid multi-scale object detection in satellite imagery[EB/OL].(2018-05-24)[2021-12-29]. https://arxiv.org/abs/1805.09512 .
[42] 彭新月, 张吴明, 钟若飞. 改进YOLOv3模型的GF-2卫星影像车辆检测[J]. 测绘科学, 2021, 46(12):147-154.
Peng X Y, Zhang W M, Zhong R F. GF-2 satellite image vehicle detection based on improved YOLOv3 model[J]. Science of Surveying and Mapping, 2021, 46(12):147-154.
[43] 汤田玉. 基于深度学习的高分辨率光学遥感影像车辆目标检测方法研究[D]. 长沙: 国防科技大学, 2017.
Tang T Y. Deep convolutional neural network based vehicle detection methods on high resolution optical remote sensing images[D]. Changsha: National University of Defense Technology, 2017.
[44] 侯涛, 蒋瑜. 改进YOLOv4在遥感飞机目标检测中的应用研究[J]. 计算机工程与应用, 2021, 57(12):224-230.
doi: 10.3778/j.issn.1002-8331.2011-0248
Hou T, Jiang Y. Resrarch of improved YOLOv4 in remote sensing aircraft target detection[J]. Computer Engineering and Applications, 2021, 57(12):224-230.
[45] 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4):927-937.
doi: 10.3778/j.issn.1673-9418.2108087
Zhao P F, Xie L B, Peng L. A deep small target detection algorithm based on attention mechanism[J]. Computer Science and Technolo-gy, 2022, 16(4):927-937.
[46] 王明阳, 王江涛, 刘琛. 基于关键点的遥感图像旋转目标检测[J]. 电子测量与仪器学报, 2021, 35(6):102-108.
Wang M Y, Wang J T, Liu C. Detection of rotating targets in remote sensing images based on key points[J]. Journal of Electronic Measurement and Instrument, 2021, 35(6):102-108.
[47] 唐建宇, 唐春晖. 基于旋转框和注意力机制的遥感图像目标检测算法[J]. 电子测量技术, 2021, 44(13):114-120.
Tang J Y, Tang C H. Remote sensing image target detection algorithm based on rotating frame and attention mechanism[J]. Electronic Measurement Technique, 2021, 44(13):114-120.
[48] 陈俊. 基于R-YOLO的多源遥感图像海面目标融合检测算法研究[D]. 武汉: 华中科技大学, 2019.
Chen J. Research on maritime target fusion detection in multi-source remote sensing images based on R-YOLO[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[49] 谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22):247-256.
doi: 10.3778/j.issn.1002-8331.2104-0213
Xie J Z, Peng H, Tang J F, et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22):247-256.
doi: 10.3778/j.issn.1002-8331.2104-0213
[50] 杨治佩, 丁胜, 张莉, 等. 无锚点的遥感图像任意角度密集目标检测方法[J]. 计算机应用, 2022, 42(6):1965-1971.
doi: 10.11772/j.issn.1001-9081.2021060890
Yang Z P, Ding S, Zhang L, et al. An arbitrary angle dense target detection method for remote sensing images without anchor points[J]. Computer Application, 2022, 42(6):1965-1971.
[51] 张宏群, 班勇苗, 郭玲玲, 等. 基于YOLOv5的遥感图像舰船的检测方法[J]. 电子测量技术, 2021, 44(8):87-92.
Zhang H Q, Ban Y M, Guo L L, et al. Remote sensing images ship detection method based on YOLOv5[J]. Electronic Measurement Technology, 2021, 44(8):87-92.
[52] 张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
Zhang Y L. Research on intelligent detection and recognition metho-ds of ship targets on the sea surface in optical images[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics,Fine Mechanics and Physics,CAS), 2021.
[53] Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
doi: 10.1016/j.isprsjprs.2019.11.023
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[6] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[7] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[10] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[11] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[12] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[13] 程滔. 一种与遥感影像同步纠正的矢量地理信息采集方法[J]. 自然资源遥感, 2022, 34(3): 59-64.
[14] 唐文魁, 俞露, 周伟奇, 岳隽, 周正. 基于长时间序列遥感数据的深圳景观连通性动态变化研究[J]. 自然资源遥感, 2022, 34(3): 97-105.
[15] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发