Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 82-91    DOI: 10.6046/zrzyyg.2023171
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
改进3D-Octave卷积的高光谱图像分类方法
郑宗生(), 王政翰(), 王振华, 卢鹏, 高萌, 霍志俊
上海海洋大学信息学院,上海 201306
An improved 3D Octave convolution-based method for hyperspectral image classification
ZHENG Zongsheng(), WANG Zhenghan(), WANG Zhenhua, LU Peng, GAO Meng, HUO Zhijun
Department of Information, Shanghai Ocean University, Shanghai 201306, China
全文: PDF(5821 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高光谱图像数据具有维度高、数据稀疏、空间光谱信息丰富等特点,针对空谱联合分类模型中高光谱图像卷积操作处理大片相同类别像素区域时会存在计算的空间冗余,3D卷积对深层空间纹理特征提取不充分,串行注意力机制结构不能充分考虑空谱相关性的问题,该文提出了改进的3D-Octave卷积高光谱图像分类模型。首先改进的3D-Octave卷积模块将输入的高光谱图像数据划分为高频特征图和低频特征图,减少空间信息冗余,提取多尺度的空间光谱特征,结合跨层融合策略,加强对浅层空间纹理特征和光谱特征的提取;随后利用2D卷积提取深层空间纹理特征并进行光谱特征融合;最后使用三维注意力机制跨纬度交互实现对有效特征的关注和激活,增强网络模型的性能和鲁棒性。结果表明,由于充分提取有效空谱联合特征,在印第安松树林(Indian Pines, IP)数据集的训练集比例为10%的条件下,OA,Kappa和AA分别为99.32%,99.13%和99.15%; 在帕维亚大学(Pavia University, PU)数据集的训练集比例为3%的条件下,OA,Kappa和AA分别为99.61%, 99.44%和99.08%。与5个主流分类模型进行对比,获得了更高的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑宗生
王政翰
王振华
卢鹏
高萌
霍志俊
关键词 空间冗余3D-Octave卷积跨层融合多尺度三维注意力机制    
Abstract

Hyperspectral image data are characterized by high dimensionality, sparse data, and rich spatial and spectral information. In spatial-spectral joint classification models, convolution operations for hyperspectral images can lead to computational spatial redundancy when processing large regions of pixels of the same category. Furthermore, the 3D convolution fails to sufficiently extract the deep spatial texture features, and the serial attention mechanism cannot fully account for spatial-spectral correlations. This study proposed an improved 3D Octave convolution-based model for hyperspectral image classification. First, the input hyperspectral images were divided into high- and low-frequency feature maps using an improved 3D Octave convolution module to reduce spatial redundancy information and extract multi-scale spatial-spectral features. Concurrently, a cross-layer fusion strategy was introduced to enhance the extraction of shallow spatial texture features and spectral features. Subsequently, 2D convolution was used to extract deep spatial texture features and perform spectral feature fusion. Finally, a 3D attention mechanism was used to focus on and activate effective features through interactions across latitudes, thereby enhancing the performance and robustness of the network model. The results indicate that, due to the adequate extraction of effective spatial-spectral joint features, the overall accuracy (OA), Kappa coefficient, and average accuracy (AA) were 99.32%, 99.13%, and 99.15%, respectively in the case where the Indian Pines (IP) dataset accounted for 10% in the training set and were 99.61%, 99.44%, and 99.08%, respectively when the Pavia University (PU) dataset represented for 3% of the training set. Compared to five mainstream classification models, the proposed method exhibits higher classification accuracy.

Key wordsspatial redundancy    3D Octave convolution    cross-layer fusion    multi-scale    3D attention mechanism
收稿日期: 2023-06-15      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“一种面向对模态遥感信息的质量抽样检验方案研究”(41671431);上海市科委地方能力建设项目“复杂潮汐环境下海岛(礁)地物信息提取与精度验证方法及其示范应用”(19050502100);国家海洋局数字海洋科学技术重点实验室开放基金项目“面向深度学习与气象云图大数据的台风强度分类研究”(B201801034)
通讯作者: 王政翰 (1998-),男,硕士研究生,主要研究方向为基于深度学习的遥感图像分类。Email: 2364639375@qq.com
作者简介: 郑宗生(1979-),男,博士,副教授,主要研究方向为遥感图像处理。Email: szheng@shou.edu.cn
引用本文:   
郑宗生, 王政翰, 王振华, 卢鹏, 高萌, 霍志俊. 改进3D-Octave卷积的高光谱图像分类方法[J]. 自然资源遥感, 2024, 36(4): 82-91.
ZHENG Zongsheng, WANG Zhenghan, WANG Zhenhua, LU Peng, GAO Meng, HUO Zhijun. An improved 3D Octave convolution-based method for hyperspectral image classification. Remote Sensing for Natural Resources, 2024, 36(4): 82-91.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023171      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/82
Fig.1  通道移位操作原理图
Fig.2  改进的3D-Oct卷积空谱特征提取模块
Fig.3  三维度注意力机制模块结构图
Fig.4  本文网络结构图
Fig.5  IP和PU数据集伪彩图和标签图
Fig.6  光谱通道数量对精度影响
Fig.7  相邻像素块尺寸对精度影响
类别 SVM 3D-CNN SSRN HybridSN DBDA 本文方法
1 0.00 94.40 88.10 93.18 100.00 100.00
2 65.10 89.22 97.57 98.71 98.75 99.33
3 84.27 93.85 97.83 97.38 99.73 100.00
4 100.00 93.75 96.35 99.01 98.60 100.00
5 95.08 97.97 97.25 99.30 99.52 99.24
6 90.45 97.93 99.07 97.90 99.84 94.60
7 100.00 92.86 100.00 96.00 95.83 99.89
8 93.71 94.81 99.54 100.00 100.00 100.00
9 0.00 66.67 75.01 80.95 94.74 100.00
10 79.78 90.16 97.61 97.74 97.28 97.92
11 48.36 96.40 95.82 97.81 97.69 99.01
12 66.54 92.55 97.14 98.27 99.60 98.51
13 95.71 91.92 100.00 99.45 96.86 97.87
14 88.00 99.39 98.69 99.56 99.30 99.04
15 72.63 96.18 95.47 96.90 98.85 98.96
16 99.56 91.76 92.59 88.76 88.17 97.60
OA 66.94 94.82 97.25 97.92 98.64 99.32
Kappa 61.20 94.10 96.85 97.76 98.43 99.13
AA 45.47 90.82 95.30 97.11 98.31 99.15
Tab.1  不同算法在IP数据集的分类结果
类别 SVM 3D-CNN SSRN HybridSN DBDA 本文方法
1 93.37 96.40 98.25 97.26 98.80 99.94
2 94.73 99.13 99.85 99.87 99.90 100.00
3 74.46 91.14 93.05 99.09 97.53 99.50
4 90.37 97.50 97.00 99.89 99.93 98.10
5 99.92 99.24 99.92 99.23 98.17 99.77
6 89.20 99.30 96.61 99.78 99.81 99.67
7 81.68 92.64 98.58 100.00 99.61 99.60
8 79.04 90.23 92.65 96.41 98.02 98.50
9 100.00 94.22 96.95 99.77 99.88 99.51
OA 91.85 97.41 98.75 99.08 99.37 99.61
Kappa 89.22 96.56 98.34 98.68 99.17 99.44
AA 89.77 95.44 97.60 97.87 98.53 99.08
Tab.2  不同算法在PU数据集的分类结果
Fig.8  IP数据集上不同算法分类效果图
Fig.9  PU数据集上不同算法分类效果图
分类方法 IP数据集 PU 数据集
OA Kappa AA OA Kappa AA
不使用注意
力模块
97.75 97.86 92.38 98.65 98.21 98.20
使用CBAM
模块
98.64 98.43 98.31 99.37 99.17 98.53
本文方法 99.32 99.13 99.15 99.61 99.44 99.08
Tab.3  使用不同注意力机制在IP和PU数据集的分类结果
[1] 陈功伟, 赵思颖, 倪才英. 高光谱监测技术在重金属污染土壤上的应用[J]. 中国科学院大学学报, 2019, 36(4):560-566.
doi: 10.7523/j.issn.2095-6134.2019.04.016
Chen G W, Zhao S Y, Ni C Y. Hyperspectral monitoring of soil contaminated by heavy metals[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4):560-566.
doi: 10.7523/j.issn.2095-6134.2019.04.016
[2] 洪霞, 江洪, 余树全. 高光谱遥感在精准农业生产中的应用[J]. 安徽农业科学, 2010, 38(1):529-531,540.
Hong X, Jiang H, Yu S Q. Application of hyper-spectral remote sensing in production of precision agriculture[J]. Journal of Anhui Agricultural Sciences, 2010, 38(1):529-531,540.
[3] Ma L, Crawford M M, Tian J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11):4099-4109.
[4] Delalieux S, Somers B, Haest B, et al. Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers[J]. Remote Sensing of Environment, 2012, 126:222-231.
[5] Ding S, Chen L. Classification of hyperspectral remote sensing images with support vector machines and particle swarm optimization[C]// 2009 International Conference on Information Engineering and Computer Science.Wuhan,China.IEEE, 2009:1-5.
[6] Kang X, Xiang X, Li S, et al. PCA-based edge-preserving features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7140-7151.
[7] Wang J, Chang C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1586-1600.
[8] Bandos T V, Bruzzone L, Camps-Valls G. Classification of hyperspectral images with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3):862-873.
[9] Cui B, Cui J, Lu Y, et al. A sparse representation-based sample pseudo-labeling method for hyperspectral image classification[J]. Remote Sensing, 2020, 12(4):664.
[10] Cao X, Xu Z, Meng D. Spectral-spatial hyperspectral image classification via robust low-rank feature extraction and Markov random field[J]. Remote Sensing, 2019, 11(13):1565.
[11] Kang X, Li S, Benediktsson J A. Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2666-2677.
[12] Chen Y, Zhao X, Jia X. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2381-2392.
[13] Madani H, McIsaac K. Distance transform-based spectral-spatial feature vector for hyperspectral image classification with stacked autoencoder[J]. Remote Sensing, 2021, 13(9):1732.
[14] Zhao W, Du S. Spectral-spatial feature extraction for hyperspectral image classification:A dimension reduction and deep learning approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4544-4554.
[15] Lee H, Eum S, Kwon H. Cross-domain CNN for hyperspectral image classification[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.Valencia,Spain.IEEE, 2018:3627-3630.
[16] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251.
[17] Zhong Z, Li J, Luo Z, et al. Spectral-spatial residual network for hyperspectral image classification:A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858.
[18] Roy S K, Krishna G, Dubey S R, et al. HybridSN:Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):277-281.
[19] Li R, Zheng S, Duan C, et al. Classification of hyperspectral image based on double-branch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3):582.
[20] Zhang C, Wang J, Yao K. Global random graph convolution network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(12):2285.
[21] Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
[22] Chen Y, Fan H, Xu B, et al. Drop an octave:Reducing spatial redundancy in convolutional neural networks with octave convolution[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South).IEEE, 2019:3434-3443.
[23] Woo S, Park J, Lee J Y, et al. CBAM:convolutional block attention module[C]// European Conference on Computer Vision.Cham:Springer, 2018:3-19.
[1] 陈理, 张仙, 李伟, 李瑜, 陈昊旻. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4): 55-61.
[2] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[3] 于航, 谭炳香, 沈明潭, 贺晨瑞, 黄逸飞. 基于机器学习算法的机载高光谱图像优势树种识别[J]. 自然资源遥感, 2024, 36(1): 118-127.
[4] 刘晓亮, 王志华, 邢江河, 周睿, 杨晓梅, 刘岳明, 张俊瑶, 孟丹. 融合多源地理数据与高分辨率遥感影像的尾矿库识别与监测——以云南省个旧市为例[J]. 自然资源遥感, 2024, 36(1): 103-109.
[5] 苏腾飞. 基于边界信息的多尺度遥感影像分割质量非监督评价方法[J]. 自然资源遥感, 2023, 35(1): 35-40.
[6] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[7] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[8] 温银堂, 王铁柱, 王书涛, 王贵川, 刘诗瑜, 崔凯. 基于多尺度分割的高分辨率遥感影像镶嵌线自动提取[J]. 自然资源遥感, 2021, 33(4): 64-71.
[9] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[10] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[11] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[12] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[13] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[14] 娄佩卿, 陈晓雨, 王疏桐, 付波霖, 黄永怡, 唐廷元, 凌铭. 基于无人机影像的喀斯特农耕区地物识别——以桂林市为例[J]. 国土资源遥感, 2020, 32(1): 216-223.
[15] 姜德才, 李文吉, 李敬敏, 白罩峰. ALOS PALSAR散射总功率的面向对象林火区提取[J]. 国土资源遥感, 2019, 31(4): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发