Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 212-219    DOI: 10.6046/zrzyyg.2023322
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
大兴安岭反照率对森林火灾的响应变化分析
陈雪娇(), 张恺桐, 王娇, 王沐楠, 瞿瑛()
东北师范大学地理科学学院,长春 130024
Analysis of surface albedo responses to forest fires in the Great Xing’an Range, China
CHEN Xuejiao(), ZHANG Kaitong, WANG Jiao, WANG Munan, QU Ying()
School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
全文: PDF(4390 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了探究大兴安岭地表反照率对森林火灾的响应变化规律,以2003年“5·5”大兴安岭金河林业局森林火灾为例,基于全球陆表卫星数据集(Global Land Surface Satellite,GLASS)地表反照率与叶面积指数(leaf area index, LAI)数据对森林火灾发生后的地表反照率变化进行了分析。研究结果表明: ①森林火灾发生后火烧迹地地表反照率短期(1 a内)降低,而在中长期(10 a)呈现显著的升高趋势(0.001 2/a); ②这种中长期的地表反照率升高趋势受同期气候变化和人类活动影响较小,而与森林火灾发生后的植被恢复过程密切相关,并且过火区域地表反照率升高与LAI增加具有较强的相关性 (r = 0.682 (p < 0.01)); ③植被的积雪掩模效应进一步导致积雪覆盖期的火烧迹地地表反照率呈现更为显著的升高趋势。研究结果可以加深对地表反照率时空变化规律的认识,更为全面地评价森林火灾在全球气候变化中的影响作用奠定了基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈雪娇
张恺桐
王娇
王沐楠
瞿瑛
关键词 地表反照率森林火灾GLASS数据植被掩模效应大兴安岭地区    
Abstract

To explore the surface albedo responses to forest fires in the Great Xing’an Range, China, this study investigated the forest fire occurring in the zone under the supervision of the Jinhe Forestry Bureau on May 5, 2003. The changes in the surface albedo after the forest fire were analyzed based on the global land surface satellite (GLASS)-derived surface albedo and leaf area index (LAI) data. The results indicate that the surface albedo in the burned zone decreased in the short term (1 a) but increased significantly at a rate of 0.001 2/a in the mid- to-long term (10 a). The increasing trend in the surface albedo was slightly influenced by contemporaneous climate changes and human activities but was closely associated with the vegetation restoration process after the forest fire. Moreover, the increase in the surface albedo in the burned zone was highly correlated with LAI increase (r=0.682, p<0.01). Additionally, the vegetation masking effect further enhanced the increasing trend in surface albedo in the burned zone during the snow-covered period. Overall, the results of this study deepen the understanding of spatiotemporal variations in the surface albedo, laying a foundation for thoroughly assessing the influence of forest fires on global climate changes.

Key wordssurface albedo    forest fire    GLASS data    vegetation masking effect    Great Xing’an Range
收稿日期: 2023-10-31      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“北极海冰反照率建模与遥感估算方法研究”(41971287);“中国东北地区地表反照率对气候变化的响应与反馈遥感监测分析”(41601349);吉林省教育厅科学研究项目“面向季节性降雪区的高时空分辨率地表反照率遥感数据集生成方法研究”(JJKH20231306KJ)
通讯作者: 瞿瑛(1985-),男,博士,教授,博士生导师,主要从事地表反照率遥感估算方法与时空变化分析研究。Email: quy100@nenu.edu.cn
作者简介: 陈雪娇(2000-),女,硕士研究生,主要从事基于卫星遥感数据的地表反照率对森林火灾的响应变化研究。Email: chenxj795@nenu.edu.cn
引用本文:   
陈雪娇, 张恺桐, 王娇, 王沐楠, 瞿瑛. 大兴安岭反照率对森林火灾的响应变化分析[J]. 自然资源遥感, 2025, 37(2): 212-219.
CHEN Xuejiao, ZHANG Kaitong, WANG Jiao, WANG Munan, QU Ying. Analysis of surface albedo responses to forest fires in the Great Xing’an Range, China. Remote Sensing for Natural Resources, 2025, 37(2): 212-219.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023322      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/212
Fig.1  火烧迹地空间位置及土地覆盖类型
Fig.2  森林火灾发生前后火烧迹地Landsat遥感影像比较
Fig.3  森林火灾发生前后年份(2002年和2003年)火烧迹地非积雪覆盖期地表反照率和LAI随时间变化
Fig.4  2002—2013年火烧迹地非积雪覆盖期地表反照率和LAI变化
Fig.5  2002—2013年火烧迹地积雪覆盖期地表反照率变化
Fig.6  2002—2013年火烧迹地与对照区地表反照率变化比较
Fig.7  2002—2013年非积雪覆盖期地表反照率和LAI的相关关系
年份 相关系数r 年份 相关系数r
2002年(火灾发生前) 0.797** 2008年 0.916**
2003年 0.733** 2009年 0.853**
2004年 0.923** 2010年 0.781**
2005年 0.772** 2011年 0.883**
2006年 0.816** 2012年 0.865**
2007年 0.805** 2013年 0.944**
Tab.1  2002—2013年地表反照率与LAI的相关系数
[1] Liang S L, Wang K C, Zhang X T, et al. Review on estimation of land surface radiation and energy budgets from ground measurement,remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3):225-240.
[2] Qu Y, Liang S L, Liu Q, et al. Mapping surface broadband albedo from satellite observations:A review of literatures on algorithms and products[J]. Remote Sensing, 2015, 7(1):990-1020.
[3] He T, Liang S L, Yu Y Y, et al. Greenland surface albedo changes in July 1981—2012 from satellite observations[J]. Environmental Research Letters, 2013, 8(4):044043.
[4] Flanner M G, Shell K M, Barlage M, et al. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008[J]. Nature Geoscience, 2011, 4(3):151-155.
[5] Jin Y, Roy D P. Fire-induced albedo change and its radiative forcing at the surface in northern Australia[J]. Geophysical Research Letters, 2005, 32(13):L13401.
[6] Pereira P, Jordán A, Cerdà A, et al. Editorial:The role of ash in fire-affected ecosystems[J]. Catena, 2015, 135:337-339.
[7] Quintano C, Fernandez-Manso A, Marcos E, et al. Burn severity and post-fire land surface albedo relationship in mediterranean forest ecosystems[J]. Remote Sensing, 2019, 11(19):2309.
[8] Lyons E A, Jin Y F, Randerson J T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations[J]. Journal of Geophysical Research-Biogeosciences, 2008, 113(s2):G02012.
[9] Liu H P, Randerson J T, Lindfors J, et al. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska:An annual perspective[J]. Journal of Geophysical Research-Atmospheres, 2005, 110(d13):D13101.
[10] Amiro B D, Orchansky A L, Barr A G, et al. The effect of post-fire stand age on the boreal forest energy balance[J]. Agricultural and Forest Meteorology, 2006, 140(1-4):41-50.
[11] Govaerts Y M, Pereira J M, Pinty B, et al. Impact of fires on surface albedo dynamics over the African continent[J]. Journal of Geophysical Research-Atmospheres, 2002, 107(d22):4629.
[12] Gatebe C K, Ichoku C M, Poudyal R, et al. Surface albedo darkening from wildfires in northern sub-Saharan Africa[J]. Environmental Research Letters, 2014, 9(6):065003.
[13] Roy D P, Landmann T. Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data[J]. International Journal of Remote Sensing, 2005, 26(19):4197-4218.
[14] 包月梅, 孙紫英, 赵鹏武, 等. 基于遥感数据的根河市火烧迹地植被覆盖度时空分析[J]. 东北林业大学学报, 2015, 43(11):62-69,74.
Bao Y M, Sun Z Y, Zhao P W, et al. Spatio-temporal analysis of vegetation coverage based on remote sensing data in burned area of Genhe City[J]. Journal of Northeast Forestry University, 2015, 43(11):62-69,74.
[15] 田成明, 陈志, 高小红. 基于Landsat5 TM的祁连山区蒸散发遥感估算——以青海祁连县为例[J]. 青海师范大学学报(自然科学版), 2014, 30(2):49-56.
Tian C M, Chen Z, Gao X H. Study of evapotranspiration in Qilian Mountains based on Landsat5 TM: A case of Qilian County Qinghai Province[J]. Journal of Qinghai Normal University(Natural Science), 2014, 30(2):49-56.
[16] 雷浩川, 刘尊方, 于晓晶, 等. 基于Landsat5影像的青海省大通县土壤表层全氮空间格局反演[J]. 青海大学学报, 2021, 39(6):79-86.
Lei H C, Liu Z F, Yu X J, et al. Spatial pattern inversion of soil surface total nitrogen in Datong County of Qinghai Province based on Landsat5 image[J]. Journal of Qinghai University, 2021, 39(6):79-86.
[17] 李静, 宫阿都, 陈艳玲, 等. 森林过火区植被遥感参数的变化与恢复特征分析[J]. 地球信息科学学报, 2018, 20(3):368-376.
doi: 10.12082/dqxxkx.2018.170464
Li J, Gong A D, Chen Y L, et al. Analysis on the characteristics of change and recovery of vegetation indices for forests in burned area[J]. Journal of Geo-Information Science, 2018, 20(3):368-376.
[18] Liang S L, Zhao X, Liu S H, et al. A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth, 2013, 6(s1):5-33.
[19] Liang S L, Cheng J, Jia K, et al. The global land surface satellite (GLASS) product suite[J]. Bulletin of the American Meteorological Society, 2021, 102(2):E323-E337.
[20] Qu Y, Liu Q, Liang S L, et al. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):907-919.
[21] Liu Q, Wang L Z, Qu Y, et al. Preliminary evaluation of the long-term GLASS albedo product[J]. International Journal of Digital Earth, 2013, 6(s1):69-95.
[22] Ma H, Liang S L. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model[J]. Remote Sensing of Environment, 2022, 273:112985.
[23] Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30:Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6):2753-2776.
doi: 10.5194/essd-13-2753-2021
[24] Theil H. A rank-invariant method of linear and polynomial regression analysis[M]//Henri Theil’s Contributions to Economics and Econometrics. Dordrecht: Springer, 1992:345-381
[25] Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3):245.
[26] Gersh M, Gleason K E, Surunis A. Forest fire effects on landscape snow albedo recovery and decay[J]. Remote Sensing, 2022, 14(16):4079.
[27] Zeng Y L, Hao D L, Park T, et al. Structural complexity biases vegetation greenness measures[J/OL]. Nature Ecology and Evolution, 2023, 7(11):1790-1798.
[28] Li X J, Zhang H Y, Qu Y. Land surface albedo variations in Sanjiang plain from 1982 to 2015:Assessing with GLASS data[J]. Chinese Geographical Science, 2020, 30(5):876-888.
[29] Li X J, Qu Y, Wang M S, et al. Snow and land cover induced surface albedo changes in Northeast China during recent decades[J]. Theoretical and Applied Climatology, 2023, 152(1):649-661.
[30] Alibakhshi S, Naimi B, Hovi A, et al. Quantitative analysis of the links between forest structure and land surface albedo on a global scale[J]. Remote Sensing of Environment, 2020, 246:111854.
[31] Randerson J T, Liu H, Flanner M G, et al. The impact of boreal forest fire on climate warming[J]. Science, 2006, 314(5802):1130-1132.
pmid: 17110574
[32] Bright R M, Zhao K G, Jackson R B, et al. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities[J]. Global Change Biology, 2015, 21(9):3246-3266.
doi: 10.1111/gcb.12951 pmid: 25914206
[1] 王健, 杜玉玲, 高钊, 吕海燕, 时雷. 基于MODIS时序数据的大兴安岭火烧迹地时空变化及其森林恢复研究[J]. 自然资源遥感, 2024, 36(2): 142-150.
[2] 袁娜, 刘绥华, 胡海涛, 尹霞, 宋善海. 黔东南稳定林地地表反照率时空变化与影响因子分析[J]. 自然资源遥感, 2024, 36(1): 200-209.
[3] 邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
[4] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[5] 孙长奎, 刘强, 闻建光, 李丹, 于坤, 张宗贵. 基于HJ-1CCD数据的地表反照率反演[J]. 国土资源遥感, 2013, 25(4): 58-63.
[6] 梁文广, 赵英时. 基于能量的地表反照率遥感反演方法研究[J]. 国土资源遥感, 2007, 19(1): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发