Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 142-150    DOI: 10.6046/zrzyyg.2023030
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS时序数据的大兴安岭火烧迹地时空变化及其森林恢复研究
王健1(), 杜玉玲1, 高钊2, 吕海燕1, 时雷1()
1.河南农业大学信息与管理科学学院,郑州 450046
2.陕西测绘地理信息局自然资源部第一大地测量队,西安 710054
Exploring the spatio-temporal variations and forest restoration of burned zones in the Great Xing’an Range based on MODIS time series data
WANG Jian1(), DU Yuling1, GAO Zhao2, LYU Haiyan1, SHI Lei1()
1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
2. The First Geodetic Survey Team of the Ministry of Natural Resources, Shaanxi Bureau of Surveying, Mapping and Geoinformation, Xi’an 710054, China
全文: PDF(9746 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

林火是对森林生态造成影响的最主要干扰因素之一,探究林火时空变化规律及森林恢复具有一定的社会学和生态学意义。大兴安岭拥有我国面积最大的原始林区,也是林火频繁发生的重点区域。本研究使用MODIS火烧迹地、土地覆盖以及总初级生产力(gross primary productivity,GPP)时间序列产品对大兴安岭2002—2021年火烧迹地分布信息进行提取,并对火后森林恢复情况进行统计。结果表明: 2002—2021年间,大兴安岭森林地区火灾次数整体呈下降趋势,但火烧迹地面积呈现波动性变化,其中2003年无论是过火面积还是火灾频率都为最高,2008年次之,2019年过火面积最小; 林火主要集中在春秋两季,3月过火面积和过火次数都为最高,9月的过火次数较高; 同时林火在空间上由东北向西南呈不均匀分布,主要集中在黑龙江大兴安岭地区和内蒙古呼伦贝尔市,且内蒙古地区的林火面积远远大于黑龙江地区。对过火地区的林种分析可知,阔叶林的过火区域最大,其次是混交林,最后是针叶林。通过对过火区域的GPP时间序列分析得出,一般灾后第一年GPP数值恢复最快,但需要近7 a时间才能完全恢复到过火前的生长水平,且不同森林类型在灾后恢复速度存在明显差异,阔叶林地恢复速度较快,其次是针叶林,之后是混交林。了解林火的时空分布能够为布置和调整防火、灭火力量提供数据支撑,灾后森林的恢复研究可为森林重建和持续发展提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王健
杜玉玲
高钊
吕海燕
时雷
关键词 森林火灾大兴安岭火烧迹地森林恢复MODIS    
Abstract

Forest fires are one of the most significant disturbance factors affecting forest ecosystems. Exploring their spatio-temporal variations and forest restoration holds certain sociological and ecological significance. The Great Xing’an Range, possessing the largest primitive area in China, is a key area suffering frequent forest fires. Hence, this study extracted the distribution information of burned zones in the Great Xing’an Range from 2002 to 2021 from the MODIS time series products involving burned zones, land cover, and gross primary productivity (GPP). Moreover, it statistically analyzed the post-fire forest restoration. The results show that: ① Fires in the forest area of the Great Xing’an Range showed an overall downward trend from 2002 to 2021, but the burned areas showed fluctuating changes. Both the burned area and fire frequency were the highest in 2003, followed by 2008, with the lowest burned area seen in 2019; ② Forest fires occurred primarily in spring and autumn, with the highest burned area and fire frequency in March and the second highest fire frequency in September; ③ Forest fires manifested an uneven spatial distribution from northeast to southwest, predominantly in the Great Xing’an Range within Heilongjiang and Hulunbuir City of Inner Mongolia. Moreover, the forest fire area in Inner Mongolia far exceeded that in Heilongjiang. The analysis of forest types in burned zones reveals that the burned areas decreased in the order of broad-leaved, mixed, and needle-leaved forests. According to the time series analysis of GPP in burned zones, GPP values recovered the fastest in the first year post-fire, but it took nearly seven years to recover to the pre-fire growth level. Different forest types manifested significantly distinct post-fire restoration rates, which decreased in the order of broad-leaved, needle-leaved, and mixed forests. Overall, ascertaining the spatio-temporal distribution of forest fires can provide data support for the arrangement and adjustment of fire prevention and control efforts, while investigating the post-fire forest restoration can provide a scientific basis for the rehabilitation and sustainable development of forests.

Key wordsforest fire    Great Xing’an Range    burned zone    forest restoration    MODIS
收稿日期: 2023-02-13      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:河南省自然科学基金项目“基于物联网的小麦赤霉病早期检测与预报技术研究”(222300420463);河南省科技研发计划联合基金(优势学科培育类)项目“基于空-地多源数据的小麦赤霉病监测预警机制研究”(222301420113)
通讯作者: 时 雷(1979-),女,博士,教授,主要从事数据挖掘、智慧农业方面的研究。Email: shilei@henau.edu.cn
作者简介: 王 健(1987-),男,博士,讲师,主要从事农业遥感方面的研究。Email: wangj_rs@126.com
引用本文:   
王健, 杜玉玲, 高钊, 吕海燕, 时雷. 基于MODIS时序数据的大兴安岭火烧迹地时空变化及其森林恢复研究[J]. 自然资源遥感, 2024, 36(2): 142-150.
WANG Jian, DU Yuling, GAO Zhao, LYU Haiyan, SHI Lei. Exploring the spatio-temporal variations and forest restoration of burned zones in the Great Xing’an Range based on MODIS time series data. Remote Sensing for Natural Resources, 2024, 36(2): 142-150.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023030      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/142
Fig.1  研究区位置示意图
重采样
编号
重采样类型 包含的IGBP类型 对应的IGBP编号
10 针叶林 常绿针叶林、落叶针叶林 1,3
20 阔叶林 常绿阔叶林、落叶阔叶林 2,4
30 针阔混交林 混交林 5
40 其他林种 郁闭灌木丛、稀疏灌木丛、多树草地、稀树草地 6,7,8,9
Tab.1  大兴安岭IGBP林区土地覆盖分类
Fig.2  大兴安岭森林区域面积及过火面积年变化
Fig.3  大兴安岭林火月度变化
Fig.4  林火空间分布
森林类型 过火面积/
108 hm2
占总过火面
积的比例/%
森林类型
占比/%
阔叶林 3 453.59 25.33 18.95
针叶林 110.82 0.81 7.39
混交林 221.63 1.63 6.64
其他林种 9 846.31 72.23 67.03
Tab.2  大兴安岭森林过火面积及森林类型分布
Fig.5  大兴安岭森林区域GPP变化趋势
Fig.6  大兴安岭森林累积过火分布
Fig.7  过火区和森林整体的7月份GPP均值对比
年份 GPP总产值/(×104 gC·m-2) 总产值比例/%
针叶林 阔叶林 混交林 针叶林 阔叶林 混交林
2002年 514.10 65.95 89.40 76.79 9.85 13.35
2003年 288.27 36.97 41.04 78.70 10.09 11.20
2004年 411.10 65.83 63.61 76.05 12.18 11.77
2005年 414.72 73.28 67.79 74.62 13.18 12.20
2006年 401.79 74.80 62.67 74.51 13.87 11.62
2007年 480.75 88.55 74.85 74.63 13.75 11.62
2008年 445.81 72.63 60.89 76.95 12.54 10.51
2009年 504.37 79.85 59.84 78.31 12.40 9.29
2010年 540.19 76.37 66.08 79.13 11.19 9.68
2011年 515.82 70.04 49.75 81.15 11.02 7.83
2012年 610.78 84.05 48.86 82.13 11.30 6.57
2013年 542.83 82.75 38.45 81.75 12.46 5.79
2014年 603.19 111.19 55.01 78.40 14.45 7.15
2015年 559.94 106.39 54.86 77.64 14.75 7.61
2016年 643.04 123.39 65.02 77.34 14.84 7.82
2017年 480.60 111.90 67.15 72.86 16.96 10.18
2018年 354.19 77.83 40.05 75.03 16.49 8.48
2019年 353.97 58.06 32.85 79.57 13.05 7.38
2020年 343.13 52.63 39.41 78.85 12.09 9.06
2021年 347.30 52.51 39.17 79.12 11.96 8.92
均值 467.79 78.25 55.84 77.68 12.92 9.40
Tab.3  过火区不同植被类型7月份的GPP产值数据
Fig.8  过火区不同植被类型7月份的GPP平均值与误差条形图
[1] 白夜, 王博, 武英达, 等. 2021年全球森林火灾综述[J]. 消防科学与技术, 2022, 41(5):705-709.
Bai Y, Wang B, Wu Y D, et al. A review of global forest fires in 2021[J]. Fire Science and Technology, 2022, 41(5):705-709.
[2] 马振宇, 陈博伟, 庞勇, 等. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源遥感, 2020, 32(1):43-50.doi:10.6046/gtzyyg.20200107.
Ma Z Y, Chen B W, Pang Y, et al. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land and Resources, 2020, 32(1) :43-50.doi:10.6046/gtzyyg.20200107.
[3] Sannigrahi S, Pilla F, Basu B, et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches[J]. The Science of the Total Environment, 2020, 725:138331.
[4] 陈艳英, 马鑫程, 徐彦平, 等. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3):88-96.doi:10.6046/zrzyyg.2021142.
Chen Y Y, Ma X C, Xu Y P, et al. Methods for the application of topography and NDVI in re- identification of remote sensing - based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3):88-96.doi:10.6046/zrzyyg.2021142.
[5] Li Q, Cui J, Jiang W, et al. Monitoring of the fire in Muli County on March 28,2020,based on high temporal-spatial resolution remote sensing techniques[J]. Natural Hazards Research, 2021, 1(1):20-31.
[6] Pérez-Cabello F, Montorio R, Alves D B. Remote sensing techniques to assess post-fire vegetation recovery[J]. Current Opinion in Environmental Science and Health, 2021, 21:100251.
[7] Marcos B, Gonçalves J, Alcaraz-Segura D, et al. Improving the detection of wildfire disturbances in space and time based on indicators extracted from MODIS data:A case study in northern Portugal[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78:77-85.
[8] Morton D C, DeFries R S, Nagol J, et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data[J]. Remote Sensing of Environment, 2011, 115(7):1706-1720.
[9] Giglio L, Roy D P. Assessment of satellite orbit-drift artifacts in the long-term AVHRR FireCCILT11 global burned area data set[J]. Science of Remote Sensing, 2022, 5:100044.
[10] Roy D P, Li Z, Giglio L, et al. Spectral and diurnal temporal suitability of GOES Advanced Baseline Imager (ABI) reflectance for burned area mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96:102271.
[11] Giglio L, Boschetti L, Roy D P, et al. The Collection 6 MODIS burned area mapping algorithm and product[J]. Remote Sensing of Environment, 2018, 217:72-85.
doi: 10.1016/j.rse.2018.08.005 pmid: 30220740
[12] Zhao J, Wang J, Meng Y, et al. Spatiotemporal patterns of fire-driven forest mortality in China[J]. Forest Ecology and Management, 2023, 529:120678.
[13] 俞昊天, 耿君, 艾达娜·哈克木, 等. 2019—2020年澳大利亚森林火灾遥感监测研究[J]. 测绘通报, 2021(s1):165-169.
Yu H T, Geng J, Adana H, et al. Remote sensing monitoring of forest fires in Australia from 2019 to 2020[J]. Bulletin of Surveying and Mapping, 2021(s1):165-169.
[14] 曾爱聪, 郭新彬, 郑文霞, 等. 基于MODIS卫星火点数据的浙江省林火时空动态变化特征[J]. 北京林业大学学报, 2020, 42(11):39-46.
Zeng A C, Guo X B, Zheng W X, et al. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11):39-46.
[15] 崔阳, 狄海廷, 邢艳秋, 等. 基于MODIS数据的2001—2018年黑龙江省林火时空分布[J]. 南京林业大学学报(自然科学版), 2021, 45(1):205-211.
doi: 10.12302/j.issn.1000-2006.201910023
Cui Y, Di H T, Xing Y Q, et al. Spatial and temporal distributions of forest fires in Heilongjiang Province from 2001 to 2018 based on MODIS data[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(1):205-211.
[16] Nolè A, Rita A, Spatola M F, et al. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics[J]. Science of the Total Environment, 2022, 823:153807.
[17] Hislop S, Haywood A, Jones S, et al. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 87:102034
[18] Qin Y, Xiao X, Wigneron J P, et al. Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019-2020[J]. Remote Sensing of Environment, 2022, 278:113087.
[19] 田晓瑞, 代玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估[J]. 应用生态学报, 2016, 27(3):769-776.
Tian X R, Dai X, Wang M Y, et al. Forest fire risk assessment for China under different climate scenarios[J]. Chinese Journal of Applied Ecology, 2016, 27(3) :769-776.
[20] 刘星光, 闫中帅. 2003年大兴安岭春季森林火灾前期气象条件分析[J]. 黑龙江气象, 2003, 20(4):29-30.
Liu X G, Yan Z S. Analysis of meteorological conditions in the early stage of spring forest fire in Daxing’anling in 2003[J]. Heilongjiang Meteorology, 2003, 20(4):29-30.
[21] 吴志伟, 常禹, 贺红士, 等. 大兴安岭呼中林区林火时空分布特征分析[J]. 广东农业科学, 2011, 38(5):189-193.
Wu Z W, Chang Y, He H S, et al. Analyzing the spatial and temporal distribution characteristics of forest fires in Huzhong area in the Great Xing’an Mountains[J]. Guangdong Agricultural Sciences, 2011, 38(5):189-193.
[22] 朱贺, 张珍, 杨凇, 等. 中国南北方林火时空分布及火险期动态变化特征——以黑龙江省和江西省为例[J]. 生态学杂志, 2023, 42(1):198-207.
Zhu H, Zhang Z, Yang S, et al. Temporal and spatial distribution of forest fire and the dynamics of fire danger period in southern and northern China:A case study in Heilongjiang and Jiangxi Provinces[J]. Chinese Journal of Ecology, 2023, 42(1):198-207.
[23] 萨如拉, 周庆, 刘鑫晔, 等. 1980—2015年内蒙古森林火灾的时空动态[J]. 南京林业大学学报(自然科学版), 2019, 43(2):137-143.
doi: 10.3969/j.issn.1000-2006.201806037
Sa R L, Zhou Q, Liu X Y, et al. Studies on the spatial and temporal dynamics of forest fires in Inner Mongolia from 1980 to 2015[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(2):137-143.
[24] 张恒, 敖子琦, 乌日汉, 等. 内蒙古大兴安岭主要乔灌树种理化性质及抗火性研究[J]. 西南林业大学学报(自然科学), 2020, 40(4):61-67.
Zhang H, Ao Z Q, Wu R H, et al. Study on physicochemical properties and fire-resistance of main tree and shrub species in Daxing’an Mountains,Inner Mongolia[J]. Journal of Southwest Forestry University(Natural Sciences), 2020, 40(4):61-67.
[25] 张玉红, 闫浩. 森林火灾后植被恢复的遥感监测[J]. 自然灾害学报, 2022, 31(2):127-136.
Zhang Y H, Yan H. RS mornitoring of vegetation restoration after forest fire[J]. Journal of Natural Disasters, 2022, 31(2):127-136.
[1] 李益敏, 冯显杰, 李媛婷, 杨雪, 向倩英, 计培琨. 云南省植被覆盖时空变化特征及影响因素研究[J]. 自然资源遥感, 2024, 36(2): 116-125.
[2] 李世杰, 冯徽徽, 王珍, 杨卓琳, 王姝. 2010—2019年间洞庭湖流域生态环境状况时空动态特征及影响因素[J]. 自然资源遥感, 2024, 36(1): 179-188.
[3] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[4] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[5] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[6] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[7] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[8] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[9] 韦耿, 侯钰俏, 韩佳媚, 查勇. 基于精细模式气溶胶与WRF模式估算PM2.5质量浓度[J]. 国土资源遥感, 2021, 33(2): 66-74.
[10] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[11] 杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[12] 王川, 范景辉, 林思美, 饶月明, 黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[13] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[14] 金楷仑, 郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[15] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发