Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 200-209    DOI: 10.6046/zrzyyg.2022486
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
黔东南稳定林地地表反照率时空变化与影响因子分析
袁娜1,2(), 刘绥华1,2(), 胡海涛1,2, 尹霞1,2, 宋善海3
1.贵州师范大学地理与环境科学学院,贵阳 550025
2.贵州师范大学贵州省山地资源与环境遥感应用重点实验室,贵阳 550025
3.贵州省生态气象和卫星遥感中心,贵阳 550002
Spatio-temporal variations and influencing factors of the stable forest land surface albedo in southeastern Guizhou Province
YUAN Na1,2(), LIU Suihua1,2(), HU Haitao1,2, YIN Xia1,2, SONG Shanhai3
1. College of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China
2. Key Laboratory of Remote Sensing Applications for Mountain Resources and Environment, Guizhou Normal University, Guiyang 550025, China
3. Guizhou Ecological Meteorology and Satellite Remote Sensing Center, Guiyang 550002, China
全文: PDF(22297 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表反照率直接影响地-气系统辐射平衡和地表能量收支。稳定林地植被生态完整,区域小气候相对稳定,且与地表反照率之间关系复杂。该文以黔东南稳定林地为例,基于MODIS 地表反照率(MCD43A3)、增强型植被指数(enhanced vegetation index,EVI)(MOD13Q1)、土地利用(MOD12Q1)与土壤水分、气温、降水数据,使用Theil-Sen(T-S)和Mann-Kendall (M-K)趋势分析、相关分析和多元回归分析,探究黔东南稳定林地地表反照率时空变化、与各因子相关性以及驱动因子。结果表明: ①稳定林地地表反照率在年际、生长季和休眠季分别在0.102~0.112,0.110~0.113和0.099~0.102间波动上升,整体趋势较平稳,呈中部低、四周高的空间分布格局。②在年际和生长季期,地表反照率与土壤水分呈显著负相关,相关系数分别为-0.951和-0.943; 在休眠季地表反照率与EVI呈显著正相关,相关系数为0.933。③地表反照率在年际、生长季、休眠季分别受EVI、气温负向驱动和土壤水分正向驱动,其标准化系数分别为-9.168,-11.332和1.319。该文研究结论有利于正确认识黔东南稳定林地地表反照率的驱动机制,从而为低纬度小区域林地气候变化提供参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁娜
刘绥华
胡海涛
尹霞
宋善海
关键词 黔东南稳定林地地表反照率时空变化驱动因子    
Abstract

Land surface albedo (LSA) directly affects the radiation balance and surface energy balance of the earth-atmosphere system. Stable forest land exhibits integrated ecological vegetation, a relatively stable regional microclimate, and an intricate relationship with LSA. Based on the MODIS LSA (MCD43A3), enhanced vegetation index (EVI,MOD13Q1), land use (MOD12Q1), soil moisture, air temperature, and precipitation data, this study investigated the spatio-temporal variations in LSA of stable forest land in southeastern Guizhou Province, as well as their correlation with various factors and driving factors, through Theil-Sen (T-S)/Mann-Kendall (M-K) trend analysis, correlation analysis, and multiple regression analysis. The results show that: ① The stable forest land exhibited LSAs varying between 0.102~0.112, 0.110~0.113, and 0.099~0.102, respectively in the interannual period, growing season, and dormant season. These suggest an overall stable trend and a spatial distribution pattern characterized by low values in the central portion and high values in surrounding areas; ② The LSA was significantly negatively correlated with soil moisture in the inter-annual period and the growing season, with correlation coefficients of -0.951 and -0.943, respectively. In the dormant season, the LSA was significantly positively correlated with EVI, with a correlation coefficient of 0.933; ③ The LSA was subjected to the negative driving by EVI and air temperature and positive driving by soil moisture in the interannual period, growing season, and dormant season, with standardized coefficients of -9.168, -11.332, and 1.319, respectively. The results of this study can assist in accurately understanding the driving mechanism behind the LSA of stable forest land in southeastern Guizhou Province, thereby providing a reference for studying the climate change of forest land in small areas at low latitudes.

Key wordssoutheastern Guizhou Province    stable forest land    land surface albedo    spatio-temporal variation    driving factor
收稿日期: 2022-12-07      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“山区地形下的贵州地表反照率时空变化研究”(42161029);贵州省科技计划项目“多元尺度遥感的山区耕地非农\粮化演变特征与扩散机制研究——以黔中地区为例”(黔科合基础-ZK[2022]一般278)
通讯作者: 刘绥华(1977-),男,博士,副教授,主要从事地理信息系统与遥感研究。Email: lsh23h@163.com
作者简介: 袁 娜(1995-),女,硕士,研究方向为地理信息与遥感。Email: y2043193797@163.com
引用本文:   
袁娜, 刘绥华, 胡海涛, 尹霞, 宋善海. 黔东南稳定林地地表反照率时空变化与影响因子分析[J]. 自然资源遥感, 2024, 36(1): 200-209.
YUAN Na, LIU Suihua, HU Haitao, YIN Xia, SONG Shanhai. Spatio-temporal variations and influencing factors of the stable forest land surface albedo in southeastern Guizhou Province. Remote Sensing for Natural Resources, 2024, 36(1): 200-209.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022486      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/200
Fig.1  黔东南位置及2003—2018年稳定林地分布情况
Fig.2  2003—2018年稳定林地地表反照率时间变化趋势
Fig.3  2003—2018年稳定林地地表反照率年际、生长季和休眠季空间变化趋势
Fig.4  2003—2010年、2011—2018年稳定林地地表反照率空间变化趋势
Fig.5  2003—2018年稳定林地年际地表反照率与各因子的相关性
Fig.6  2003—2018年稳定林地生长季地表反照率与各因子的相关性
Fig.7  2003—2018年稳定林地休眠季地表反照率与各因子的相关性
驱动因子 休眠季 生长季 年均值
降水 0.889 1.892 1.371
气温 1.199 11.332 1.564
EVI 1.197 6.287 9.168
土壤水分 1.319 1.508 2.246
Tab.1  2003—2018年黔东南地表反照率驱动因子标准化系数绝对值
Fig.8  2003—2018年反照率与各因子在年度均值、生长季和休眠季的相对重要性的空间分布
[1] Dickinson R E. Land surface processes and climate—surface albedos and energy balance[M]. Amsterdam:Elsevier, 1983:25,305-353.
[2] Cess R D. Biosphere-albedo feedback and climate modeling[J]. Journal of the Atmospheric Sciences, 1978, 35(9):1765-1768.
doi: 10.1175/1520-0469(1978)035<1765:BAFACM>2.0.CO;2
[3] Lee X, Goulden M L, Hollinger D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373):384-387.
doi: 10.1038/nature10588
[4] Rotenberg E, Yakir D. Contribution of semi-arid forests to the climate system[J]. Science, 2010, 327(5964):451-454.
doi: 10.1126/science.1179998 pmid: 20093470
[5] 翟俊, 刘荣高, 刘纪远, 等. 1990—2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7):875-885.
Zhai J, Liu R G, Liu J Y, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990—2010[J]. Acta Geographica Sinica, 2013, 68(7):875-885.
[6] Planque C, Carrer D, Roujean J L. Analysis of MODIS albedo changes over steady woody covers in France during the period of 2001—2013[J]. Remote Sensing of Environment, 2017, 191:13-29.
doi: 10.1016/j.rse.2016.12.019
[7] Kuusinen N, Stenberg P, Korhonen L, et al. Structural factors driving boreal forest albedo in Finland[J]. Remote Sensing of Environment, 2016, 175:43-51.
doi: 10.1016/j.rse.2015.12.035
[8] 赵久佳, 张晓丽. 中国北方地区森林覆盖及反照率年际变化[J]. 浙江农林大学学报, 2015, 32(5): 683-690.
Zhao J J, Zhang X L. Interannual variation of forest cover and albedo in Northern China[J]. Journal of Zhejiang University of Agriculture and Forestry, 2015, 32(5):683-690.
[9] Bonan G B. Forests and climate change:Forcings,feedbacks,and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449.
doi: 10.1126/science.1155121
[10] 邓小进, 井长青, 郭文章, 等. 准噶尔盆地地表反照率时空变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(2):314-326.
Deng X J, Jing C Q, Guo W Z, et al. Spatio-temporal variation characteristics of surface albedo and analysis of influential factors in the Junggar Basin[J]. Arid Zone Research, 2021, 38(2):314-326.
[11] Jin Y, Schaaf C B, Woodcock C E, et al. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:2.Validation[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D5).
[12] Lucht W, Hyman A H, Strahler A H, et al. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape[J]. Remote Sensing of Environment, 2000, 74(1):85-98.
doi: 10.1016/S0034-4257(00)00125-5
[13] Sabziparvar A A, Ghahfarokhi S M M, Khorasani H T. Long-term changes of surface albedo and vegetation indices in north of Iran[J]. Arabian Journal of Geosciences, 2020, 13: 1-11.
doi: 10.1007/s12517-019-5007-7
[14] Fernandes R, Leblanc S G. Parametric (modified least squares) and non-parametric (Theil-Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors[J]. Remote Sensing of Environment, 2005, 95(3):303-316.
doi: 10.1016/j.rse.2005.01.005
[15] 阮颖, 王传宽, 刘帆, 等. 落叶阔叶林反照率的时间变化与影响因素[J]. 应用生态学报, 2022, 33(8):2068-2076.
doi: 10.13287/j.1001-9332.202208.011
Ruan Y, Wang C K, Liu F, et al. Temporal variation and influencing factors of albedo in a deciduous broad-leaved forest[J]. Chinese Journal of Applied Ecology, 2022, 33(8):2068-2076.
doi: 10.13287/j.1001-9332.202208.011
[16] 余予, 李扬云, 童应祥, 等. 寿县地区小麦和水稻田地表反照率观测分析[J]. 气候与环境研究, 2009, 14(6):639-645.
Yu Y, Li Y Y, Tong Y X, et al. Observation and analysis of surface albedo of wheat and rice fields in Shouxian region[J]. Climatic and Environmental Research, 2009, 14(6):639-645.
[17] Betts A K, Desjardins R L, Worth D. Impact of agriculture,forest and cloud feedback on the surface energy budget in BOREAS[J]. Agricultural and Forest Meteorology, 2007, 142(2-4):156-169.
doi: 10.1016/j.agrformet.2006.08.020
[18] 朱躲萍, 叶辉, 王军邦, 等. 青海三江源区高寒植被地表反照率变化及其辐射温度效应[J]. 生态学报, 2022, 42(14):5630-5641.
Zhu D P, Ye H, Wang J B, et al. Albedo changes of alpine vegetation and its radiative temperature effect in the Three-River Headwaters Region of Qinghai[J]. Acta Ecologica Sinica, 2022, 42(14):5630-5641.
[19] 张学珍. 锡林郭勒草原地表反照率对气候变化的响应[J]. 地理研究, 2012, 31(2):299-310.
Zhang X Z. The responses of surface albedo to climatic changes in Xilin Gol grassland[J]. Geographical Research, 2012, 31(2):299-310.
doi: 10.11821/yj2012020010
[20] 陆云波, 王伦澈, 牛自耕, 等. 2000—2017年中国区域地表反照率变化及其影响因子[J]. 地理研究, 2022, 41(2):562-579.
doi: 10.11821/dlyj020210005
Lu Y B, Wang L C, Niu Z G, et al. Variations of land surface albedo and its influencing factors in China from 2000 to 2017[J]. Geographical Research, 2022, 41(2):562-579.
doi: 10.11821/dlyj020210005
[21] 高婷, 沈润平, 李磊, 等. 基于MODIS数据地表反照率时空变化特征及影响因子研究[J]. 气候与环境研究, 2021, 26(6):648-662.
Gao T, Shen R P, Li L, et al. Spatial and temporal variations of land surface albedo and its influencing factors based on MODIS data[J]. Climatic and Environmental Research, 2021, 26(6):648-662.
[22] 赵之重, 赵凯, 徐剑波, 等. 三江源地表反照率时空变化及其与气候因子的关系[J]. 干旱区研究, 2014, 31(6):1031-1038.
Zhao Z Z, Zhao K, Xu J B, et al. Spatial-temporal changes of surface albedo and its relationship with climate factors in the source of three rivers region[J]. Arid Zone Research, 2014, 31(6):1031-1038.
[1] 刘源, 李婷. 城市化进程下厦门市海岸线形态时空变化分析[J]. 自然资源遥感, 2024, 36(1): 267-274.
[2] 职露, 胡涛, 邹滨, 李浩生, 赵永强. 河南省植被NPP时空分异及其驱动因子[J]. 自然资源遥感, 2023, 35(4): 169-177.
[3] 陈佩佩, 张利华, 崔越, 陈俊宏. 基于BEPS-Terrainlab V2.0模型的鄂西犟河流域NPP模拟及环境响应分析[J]. 自然资源遥感, 2023, 35(4): 273-281.
[4] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[5] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[6] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[7] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[8] 王雅婷, 朱长明, 张涛, 张新, 石智宇. 2002—2020年秦岭—黄淮平原交界带植被物候特征遥感监测分析[J]. 自然资源遥感, 2022, 34(4): 225-234.
[9] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
[10] 左璐, 孙雷刚, 鲁军景, 徐全洪, 刘剑锋, 马晓倩. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214.
[11] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[12] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[13] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[14] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[15] 邓小进, 井长青, 郭文章, 闫豫疆, 陈宸. 准噶尔盆地不同土地利用类型地表反照率研究[J]. 自然资源遥感, 2021, 33(3): 173-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发