Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 80-87    DOI: 10.6046/zrzyyg.2023324
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
综合冰通量散度的格陵兰冰盖表面物质平衡遥感估算
魏佳宁1(), 罗凯1, 陈又榕1, 李培根1, 杨康1,2,3()
1.南京大学地理与海洋科学学院,南京 210023
2.江苏省地理信息技术重点实验室,南京 210023
3.中国南海研究协同创新中心,南京 210023
Estimating the surface mass balance of the Greenland Ice Sheet based on remote sensing data and ice flux divergence
WEI Jianing1(), LUO Kai1, CHEN Yourong1, LI Peigen1, YANG Kang1,2,3()
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Collaborative Innovation Center of South China Sea Studies, Nanjing 210023, China
全文: PDF(3190 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近几十年,格陵兰冰盖表面物质平衡(surface mass balance,SMB)和溢出冰川崩解造成冰盖物质损失加速,其中SMB的贡献近年来持续增大。因此,掌握SMB时空分布对于理解格陵兰冰盖物质平衡具有重要意义。然而,研究格陵兰冰盖SMB的2种主要手段中,区域气候模型模拟的SMB存在较大不确定性,溢出冰川通量门遥感观测仅能间接获得通量门上游流域整体的SMB值,难以反映SMB的空间分布。本研究提出了一种综合冰通量散度的格陵兰冰盖表面物质平衡遥感估算方法,能够较为准确地估算SMB空间分布: ①利用ICESat-2卫星激光测高数据获取格陵兰冰盖高程年际变化量; ②利用MEaSUREs冰流速遥感数据和BedMachine冰厚度数据,采用基于像元的有限差分法计算冰通量散度,估算冰流造成的冰盖高程变化,进而从ICESat-2冰盖高程变化中减去由冰流造成的冰盖高程变化,获得由SMB引起的冰盖高程变化; ③利用粒雪密实化模型将SMB引起的高程变化转换为质量变化,即可反映格陵兰冰盖年际SMB空间分布。研究采用该方法估算了2019年与2020年格陵兰冰盖SMB空间分布,通过与观测站点实测SMB对比分析,表明本方法估算SMB的精度较高(RMSE为0.519 m w.e.),优于区域气候模型(RMSE为0.565~0.877 m w.e.),是一种较为可靠的格陵兰冰盖表面物质平衡时空分布遥感估算方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏佳宁
罗凯
陈又榕
李培根
杨康
关键词 表面物质平衡ICESat-2冰通量粒雪密实化格陵兰冰盖    
Abstract

In recent decades, the surface mass balance (SMB) and the calving of outlet glaciers have accelerated the mass loss of the Greenland Ice Sheet (GrIS), with SMB’s contribution continuing to increase. Therefore, determining SMB’s spatiotemporal distribution is critical for understanding the mass balance of the GrIS. Currently, the regional climate model and the remote sensing observation of outlet glacier flux gates serve as two primary calculation methods for the GrIS’s SMB. However, the former method results in large uncertainties in the SMB simulation. The latter method can only indirectly estimate the overall SMB value for the upper reaches of the flux gate, failing to reflect the spatial distribution of SMB. This study proposed a method for estimating the GrIS’s SMB based on remote sensing data and ice flux divergence, obtaining the relatively accurate spatial distribution of SMB. First, the interannual variation in the elevation of the GrIS was derived from ICESat-2 laser altimetry data. Second, based on MEaSUREs-derived glacier flow velocity data and BedMachine-derived ice thickness data, the ice flux divergence was calculated using the pixel-based finite difference method to estimate the GrIS’s elevation changes caused by glacier flow. The GrIS’s elevation changes caused by SMB were then obtained by subtracting the elevation changes caused by glacier flow from the ICESat-2 elevation data. Third, through the firn densification model, the elevation changes caused by SMB were converted into mass changes to reflect the interannual spatial distribution of the GrIS’s SMB. The proposed method was applied to estimate the spatial distribution of the GrIS’s SMB in 2019 and 2020, yielding relatively high accuracy (RMSE=0.519 m w.e.) in comparison with the measured SMB from the observation station, and outperforming the regional climate model (RMSE=0.565 m to 0.877 m w.e.), ultimately demonstrating its reliability.

Key wordssurface mass balance    ICESat-2    ice flux    firn densification    Greenland Ice Sheet
收稿日期: 2023-10-31      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:国家重点研发计划项目子课题“复杂陆地海洋环境异常动态遥感监测”(2022YFB3903601);国家自然科学基金面上项目“格陵兰北部地区融水汇流过程遥感观测、模拟与影响分析”(42271320)
通讯作者: 杨 康(1986-),男,博士,教授,主要从事冰冻圈水文遥感研究。Email: kangyang@nju.edu.cn
作者简介: 魏佳宁(2001-),女,本科,主要从事冰冻圈水文遥感研究。Email: weijianing0@gmail.com
引用本文:   
魏佳宁, 罗凯, 陈又榕, 李培根, 杨康. 综合冰通量散度的格陵兰冰盖表面物质平衡遥感估算[J]. 自然资源遥感, 2025, 37(2): 80-87.
WEI Jianing, LUO Kai, CHEN Yourong, LI Peigen, YANG Kang. Estimating the surface mass balance of the Greenland Ice Sheet based on remote sensing data and ice flux divergence. Remote Sensing for Natural Resources, 2025, 37(2): 80-87.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023324      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/80
Fig.1  研究区与数据概况
Fig.2  冰盖表面物质平衡SMB遥感估算结果
Fig.3  与PROMICE实测SMB的对比分析
Fig.4  2019年本研究遥感估算SMB与RCM(MAR,RACMO)模拟SMB的回归分析
Fig.5  本研究遥感估算SMB与RCM(MAR,RACMO)模拟SMB分海拔对比
[1] Morlighem M, Williams C N, Rignot E, et al. BedMachine v3:Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation[J]. Geophysical Research Letters, 2017, 44(21):11051-11061.
doi: 10.1002/2017GL074954 pmid: 29263561
[2] Shepherd A, Ivins E, Rignot E, et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579(7798):233-239.
[3] Vaughan D G, Comiso J C, Allison I, et al. Observations:Cryosphere[J]. Climate Change, 2013, 2103:317-382.
[4] Van den Broeke M R, Enderlin E M, Howat I M, et al. On the recent contribution of the Greenland ice sheet to sea level change[J]. The Cryosphere, 2016, 10(5):1933-1946.
[5] Lenaerts J T M, Medley B, van den Broeke M R, et al. Observing and modeling ice sheet surface mass balance[J]. Reviews of Geophysics, 2019, 57(2):376-420.
doi: 10.1029/2018RG000622 pmid: 31598609
[6] Hanna E, Mernild S H, Cappelen J, et al. Recent warming in Greenland in a long-term instrumental (1881—2012) climatic context:I.Evaluation of surface air temperature records[J]. Environmental Research Letters, 2012, 7(4):045404.
[7] Ettema J, van den Broeke M R, van Meijgaard E, et al. Higher surface mass balance of the Greenland ice sheet revealed by high-re-solution climate modeling[J]. Geophysical Research Letters, 2009, 36(12):L12501.
[8] Goelzer H, Huybrechts P, Fürst J J, et al. Sensitivity of Greenland ice sheet projections to model formulations[J]. Journal of Glaciology, 2013, 59(216):733-749.
[9] Noël B, van de Berg W J, van Wessem J M, et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2-Part 1:Greenland (1958—2016)[J]. The Cryosphere, 2018, 12(3):811-831.
[10] Fettweis X, Box J E, Agosta C, et al. Reconstructions of the 1900—2015 Greenland ice sheet surface mass balance using the regional climate MAR model[J]. The Cryosphere, 2017, 11(2):1015-1033.
[11] Vernon C L, Bamber J L, Box J E, et al. Surface mass balance mo-del intercomparison for the Greenland ice sheet[J]. The Cryosphere, 2013, 7(2):599-614.
[12] Fettweis X, Hofer S, Krebs-Kanzow U, et al. GrSMBMIP:Intercomparison of the modelled 1980—2012 surface mass balance over the Greenland Ice Sheet[J]. The Cryosphere, 2020, 14(11):3935-3958.
[13] Kuipers M P, Ligtenberg S R M, Noël B P Y, et al. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes,1960—2014[J]. The Cryosphere, 2015, 9(6):2009-2025.
[14] Cooper M G, Smith L C. Satellite remote sensing of the Greenland ice sheet ablation zone:A review[J]. Remote Sensing, 2019, 11(20):2405.
[15] Markus T, Neumann T, Martino A, et al. The ice,cloud,and land elevation satellite-2 (ICESat-2):Science requirements,concept,and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273.
[16] Smith B, Sutterley T, Dickinson S, et al. ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change,Version 2 [DS]. 2022.
[17] Joughin I. MEaSUREs Greenland Annual Ice Sheet Velocity Mosaics from SAR and Landsat,Version 4 [DS]. 2022.
[18] Morlighem M, Williams C, Rignot E, et al. IceBridge BedMachine Greenland,Version 5 [DS]. 2022.
[19] Hamilton G S, Whillans I M. Local rates of ice-sheet thickness change in Greenland[J]. Annals of Glaciology, 2002, 35:79-83.
[20] Medley B, Neumann T, Zwally H J, et al. NASA GSFC Firn Densification Model version 1.2.1 (GSFC-FDMv1.2.1) for the Greenland and Antarctic Ice Sheets:1980—2022 (1.2.1 release 2) [DS]. 2022.
[21] Machguth H, Thomsen H H, Weidick A, et al. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers[J]. Journal of Glaciology, 2016, 62(235):861-887.
[22] Brinkerhoff D, Johnson J. A stabilized finite element method for calculating balance velocities in ice sheets[J]. Geoscientific Model Development, 2015, 8(5):1275-1283.
[23] Van Tricht L, Huybrechts P, Van Breedam J, et al. Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch-Pers glacier complex (Switzerland)[J]. The Cryosphere, 2021, 15(9):4445-4464.
[24] Sørensen L S, Simonsen S B, Nielsen K, et al. Mass balance of the Greenland ice sheet (2003—2008) from ICESat data - the impact of interpolation,sampling and firn density[J]. The Cryosphere, 2011, 5(1):173-186.
[25] Sutterley T C, Velicogna I, Fettweis X, et al. Evaluation of reconstructions of snow/Ice melt in Greenland by regional atmospheric climate models using laser altimetry data[J]. Geophysical Research Letters, 2018, 45(16):8324-8333.
[26] Le Brocq A M, Payne A J, Siegert M J. West Antarctic balance calculations:Impact of flux-routing algorithm,smoothing algorithm and topography[J]. Computers & Geosciences, 2006, 32(10):1780-1795.
[27] Miles E, McCarthy M, Dehecq A, et al. Health and sustainability of glaciers in high Mountain Asia[J]. Nature Communications, 2021, 12(1):2868.
doi: 10.1038/s41467-021-23073-4 pmid: 34001875
[28] Cuffey K M, Paterson W S B. The Physics of Glaciers[M]. Newyork: Academic Press, 2010.
[29] Zekollari H, Huybrechts P, Fürst J J, et al. Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex,Engadin,Switzerland[J]. Annals of Glaciology, 2013, 54(63):343-351.
[30] Bons P D, Kleiner T, Llorens M G, et al. Greenland ice sheet:Higher nonlinearity of ice flow significantly reduces estimated basal motion[J]. Geophysical Research Letters, 2018, 45(13):6542-6548.
[31] Reeh N, Mohr J J, Madsen S N, et al. Three-dimensional surface velocities of Storstrømmen glacier,Greenland,derived from radar interferometry and ice-sounding radar measurements[J]. Journal of Glaciology, 2003, 49(165):201-209.
[32] Meierbachtol T, Harper J, Humphrey N. Basal drainage system response to increasing surface melt on the greenland ice sheet[J]. Science, 2013, 341(6147):777-779.
doi: 10.1126/science.1235905 pmid: 23950535
[33] Mankoff K D, Colgan W, Solgaard A, et al. Greenland Ice Sheet solid ice discharge from 1986 through 2017[J]. Earth System Science Data, 2019, 11(2):769-786.
doi: 10.5194/essd-11-769-2019
[34] Medley B, Neumann T A, Zwally H J, et al. Simulations of firn processes over the Greenland and Antarctic ice sheets:1980—2021[J]. The Cryosphere, 2022, 16(10):3971-4011.
[35] Ligtenberg S R M, Kuipers Munneke P, van den Broeke M R. Present and future variations in Antarctic firn air content[J]. The Cryosphere, 2014, 8(5):1711-1723.
[1] 朱雨欣, 满梦甜, 王裕涵, 陈定华, 杨康. 基于PlanetScope光学小卫星与ICESat-2激光测高数据的极地冰盖冰面湖水深遥感反演[J]. 自然资源遥感, 2024, 36(4): 314-320.
[2] 张闻松, 朱雨欣, 邱玉宝, 王裕涵, 刘金昱, 杨康. 全格陵兰冰盖表面融水卫星遥感观测[J]. 自然资源遥感, 2024, 36(1): 110-117.
[3] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[4] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[5] 马山木, 甘甫平, 吴怀春, 闫柏琨. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3): 164-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发