Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 117-127    DOI: 10.6046/zrzyyg.2023336
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
川西可尔因稀有金属矿集区遥感地质找矿应用
史俊波1(), 张杰1(), 侯娜2, 张辉善3, 丁晓平1, 杜建军1, 朱海洋1
1.四川省第九地质大队,德阳 618000
2.中国建筑材料工业地质勘查中心甘肃总队,天水 741000
3.中国地质调查局西安地质调查中心,西安 710054
Application of remote sensing geology in mineral prospecting in the Ke’eryin rare metal ore concentration area in the western Sichuan Basin
SHI Junbo1(), ZHANG Jie1(), HOU Na2, ZHANG Huishan3, DING Xiaoping1, DU Jianjun1, ZHU Haiyang1
1. The 9th Geological Brigade of Sichuan Province, Deyang 618000, China
2. Gansu Corps of China Construction Materials Industry Geological Survey Center, Tianshui 741000, China
3. Xi’an Center of Geological Survey, China Geological Survey, Xi’an 710054, China
全文: PDF(13757 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

川西可尔因稀有金属矿集区位于松潘—甘孜成矿带东段,拥有丰富的花岗伟晶岩型锂、铌、铍、钽等稀有金属矿产资源,是我国继新疆阿尔泰可可托海式花岗伟晶岩型稀有金属矿集区、川西甲基卡式花岗伟晶岩型稀有金属矿集区、川西九龙花岗伟晶岩型稀有金属矿集区之外的又一处硬岩型稀有金属矿最集中的产地之一。矿集区属构造剥蚀深切割高山区,因交通不便、植被覆盖茂密、地形陡峭等因素绝大多数地段人员无法到达,传统地质调查存在一定的局限性。以川西可尔因稀有金属矿集区内已有矿床中含矿花岗伟晶岩脉在高分辨率遥感影像图上的影像特征和解译标志为基础,对矿集区进行花岗伟晶岩脉室内解译及部分野外验证,掌握了川西可尔因稀有金属矿集区内花岗伟晶岩脉的分布规律及特征: 稀有金属矿以花岗伟晶岩脉为载体,在可尔因复式岩体边缘0~5 km范围内的断裂带及围岩裂隙等构造薄弱处侵入; 提出了出露于地表的花岗伟晶岩脉及转石是找稀有金属矿最直接的标志; 建立了川西可尔因稀有金属矿集区高植被覆盖区遥感地质找矿方法,有效弥补了传统地质找矿的不足; 在可尔因复式岩体北部及北西部划分了3处重点找矿地段,确定了新一轮找矿突破战略行动方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史俊波
张杰
侯娜
张辉善
丁晓平
杜建军
朱海洋
关键词 可尔因岩体稀有金属矿集区遥感地质花岗伟晶岩脉    
Abstract

The Ke’eryin rare metal ore concentration area in the western Sichuan Basin (also referred to as the Ke’eryin ore concentration area), located in the eastern segment of the Songpan-Ganzi metallogenic belt, boasts abundant granitic pegmatite-hosted rare metal resources like lithium, niobium, beryllium, and tantalum. It stands as one of the most concentrated areas for hard-rock rare metal deposits in China, following the granitic pegmatite-type rare metal ore concentration areas in the Koktokay area in Altay in Xinjiang, and the Jiajika and Jiulong areas in the western Sichuan Basin. The Ke’eryin ore concentration area is characterized by tectonic denudation and deeply cut high mountains, resulting in inconvenient transportation, dense vegetation, and steep terrains. Consequently, most parts of the area are inaccessible to humans, hindering the implementation of traditional geological surveys. Based on the features and interpretation keys of high-resolution remote sensing images for ore-bearing granitic pegmatite veins in known deposits within the Ke’eryin ore concentration area, this study performed laboratory interpretation and partial field verification of these veins, revealing the distribution patterns and characteristics of granitic pegmatite veins in the area. Rare metal deposits hosted by granitic pegmatite veins intruded into weak structures such as fault zones and surrounding rock fractures within a range of 0 km to 5 km on the margin of the Ke’eryin complex rock mass. The exposed granitic pegmatite veins and boulders were identified as the most direct indicators for locating rare metal deposits. A prospecting method based on remote sensing geology was developed for highly vegetation-covered areas in the Ke’eryin ore concentration area, effectively addressing the limitations of traditional geological prospecting methods. Using the developed method, this study determined three critical prospecting areas in the northern and northwestern portions of the Ke’eryin complex rock mass, establishing them as the targets for subsequent strategic prospecting breakthroughs.

Key wordsKe’eryin rock mass    rare metal ore concentration area    remote sensing geology    granitic pegmatite vein
收稿日期: 2023-11-06      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:自然资源部新一轮找矿战略行动科技支撑项目“松潘-甘孜锂稀有金属矿关键勘查技术与找矿预测”(ZKKJ202412);四川省地质矿产勘查开发局专项项目“川西可尔因稀有金属矿集区遥感地质找矿应用研究”(SCDZ-KJXM202303)
通讯作者: 张 杰(1985-),男,工程硕士,高级工程师,主要从事区域地质(矿产)调查研究。Email: 574076635@qq.com
作者简介: 史俊波(1983-),男,工程硕士,高级工程师,主要从事区域地质(矿产)调查、遥感地质调查研究。Email: 9121235@qq.com
引用本文:   
史俊波, 张杰, 侯娜, 张辉善, 丁晓平, 杜建军, 朱海洋. 川西可尔因稀有金属矿集区遥感地质找矿应用[J]. 自然资源遥感, 2025, 37(2): 117-127.
SHI Junbo, ZHANG Jie, HOU Na, ZHANG Huishan, DING Xiaoping, DU Jianjun, ZHU Haiyang. Application of remote sensing geology in mineral prospecting in the Ke’eryin rare metal ore concentration area in the western Sichuan Basin. Remote Sensing for Natural Resources, 2025, 37(2): 117-127.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023336      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/117
Fig.1  松潘—甘孜造山带构造图(据参考文献[13]修编)
1.蛇绿混杂岩带; 2.滑脱带; 3.逆冲断层; 4.飞来峰; 5.平移断层; 6.深层高温韧性滑脱剪切带出露范围; 7.褶皱轴线; 8.中生代花岗岩; 9.韧性滑移矢量; Ⅰ.羌塘—昌都陆块; Ⅱ.松潘—甘孜造山带; Ⅲ.扬子陆块; A1.中咱微板块; A2.白玉—义敦弧前(间)带; A3.沙鲁里主弧逆冲断带; B1.摩天岭逆冲滑脱推覆带; B2.马尔康北东陆源中央褶皱推覆带; B3.汶川—丹巴腹地弧形滑脱推覆带; B4.雅江被动陆源中央褶皱带推覆带; B5.木里腹陆弧形滑脱推覆带; C1.龙门山前陆逆冲带; C2.盐源前陆逆冲带; D1.甲基卡伟晶岩型稀有金属矿集区; D2.丹巴伟晶岩型白云母矿集区; D3.可尔因伟晶岩型稀有金属矿集区; D4.雪宝顶伟晶岩型稀有金属矿集区; ①金沙江蛇绿混杂岩带; ②定曲—盖玉逆冲断层; ③甘孜—理塘蛇绿混杂岩带; ④鲜水河平移剪切带; ⑤青川逆冲带; ⑥丹巴北缘滑脱带; ⑦龙门山断裂带; ⑧木里断裂带; ⑨北川—映秀断裂带; ⑩金河—箐河断裂带
Fig.2  可尔因稀有金属矿集区岩浆岩分布
解译对象 矿物成分特征 地形地貌特征 遥感解译标志
花岗伟晶岩脉 主要矿物成分常有微斜长石、钠长石、石英、锂辉石、锂云母、白云母、黑云母及少量其他暗色矿物 正地形凸起或陡崖 灰色、灰白色,呈高亮度的狭窄条带状、透镜状影纹
花岗伟晶岩转石 散落或堆积在有花岗伟晶岩脉出露的坡体下方 灰色、灰白色,呈高亮度的团块状(块石),常掩盖于密林之中
Tab.1  花岗伟晶岩脉及其转石遥感解译标志表
Fig.3  已有典型矿床花岗伟晶岩脉解译及野外验证
Fig.4  已有典型矿床花岗伟晶岩转石解译及野外验证
Fig.5  李家沟北锂矿东侧花岗伟晶岩脉及转石解译及野外验证
Fig.6  神山村一带花岗伟晶岩脉解译及野外验证
Fig.7  脚木足地区花岗伟晶岩脉解译及野外验证
Fig.8  喀鲁寺庙北一带花岗伟晶岩脉解译及野外验证
Fig.9  喀鲁寺庙南花岗伟晶岩脉解译及野外验证
Fig.10  遥感地质解译成果附找矿有利地段
[1] 李建康. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京: 中国地质大学(北京), 2006.
Li J K. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan,China[D]. Beijing: China University of Geosciences(Beijing), 2006.
[2] 岳相元, 张贻, 周雄, 等. 川西可尔因矿集区稀有金属矿床成矿规律与找矿方向[J]. 矿床地质, 2019, 38(4):867-876.
Yue X Y, Zhang Y, Zhou X, et al. Metallogenic regularity and prospecting direction of rare metal deposits in Keeryin ore concentration area,western Sichuan[J]. Mineral Deposits, 2019, 38(4):867-876.
[3] 王子平, 刘善宝, 马圣钞, 等. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 2018, 43(6):2029-2041.
Wang Z P, Liu S B, Ma S C, et al. Metallogenic regularity,deep and periphery prospecting of dangba superlarge spodumene deposit in Aba,Sichuan Province[J]. Earth Science, 2018, 43(6):2029-2041.
[4] 郑艺龙, 许志琴, 高文琦, 等. 川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因[J]. 地质学报, 2021, 95(10):3069-3084.
Zheng Y L, Xu Z Q, Gao W Q, et al. Tectonic genesis of the Markam gneiss dome and pegmatitic lithium deposits in western Sichuan Province[J]. Acta Geologica Sinica, 2021, 95(10):3069-3084.
[5] 王登红, 刘丽君, 侯江龙, 等. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 2017, 24(5):1-7.
doi: 10.13745/j.esf.yx.2017-1-1
Wang D H, Liu L J, Hou J L, et al. A preliminary review of the application of “Five levels+Basement” model for Jiajika-style rare metal deposits[J]. Earth Science Frontiers, 2017, 24(5):1-7.
[6] 刘善宝, 王成辉, 王登红, 等. 四川甲基卡锂矿伟晶岩转石分布区“3定2参”大比例尺填图法及其在青藏高原应用的意义[J]. 地质学报, 2020, 94(1):326-332.
Liu S B, Wang C H, Wang D H, et al. The “3D2R-BP” large scale mapping method for blocks of pegmatite in the Jajika deposit,western Sichuan,and significance of its application in the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2020, 94(1):326-332.
[7] 唐文周. 我国遥感地质工作的现状和近期展望[J]. 国土资源遥感, 1998, 10(2):24-32.doi:10.6046/gtzyyg.1998.02.04.
Tang W Z. Present situation and recent prospect of remote sensing geological work in China[J]. Remote Sensing for Land and Resources, 1998, 10(2):24-32.doi:10.6046/gtzyyg.1998.02.04.
[8] 熊盛青. 国土资源遥感技术应用现状与发展趋势[J]. 国土资源遥感, 2002, 14(1):1-5.doi:10.6046/gtzyyg.2002.01.01.
Xiong S Q. The application status and development trend of remote sensing technology in national land and resources[J]. Remote Sensing for Land and Resources, 2002, 14(1):1-5.doi:10.6046/gtzyyg.2002.01.01.
[9] 范玉海, 王辉, 杨兴科, 等. 基于高分辨率遥感数据的稀有金属矿化带勘查[J]. 国土资源遥感, 2018, 30(1):128-134.doi:10.6046/gtzyyg.2018.01.18.
Fan Y H, Wang H, Yang X K, et al. Application of high-resolution remote sensing technology to the prospecting for rare metal mineralization belt[J]. Remote Sensing for Land and Resources, 2018, 30(1):128-134.doi:10.6046/gtzyyg.2018.01.18.
[10] 张微, 金谋顺, 张少鹏, 等. 高分遥感卫星数据在东昆仑成矿带找矿预测中的应用[J]. 国土资源遥感, 2016, 28(2):112-119.doi:10.6046/gtzyyg.2016.02.18.
Zhang W, Jin M S, Zhang S P, et al. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. Remote Sensing for Land and Resources, 2016, 28(2):112-119.doi:10.6046/gtzyyg.2016.02.18.
[11] 姜琪, 代晶晶, 王登红, 等. 光学遥感在识别花岗伟晶岩型锂矿床中的应用[J]. 矿床地质, 2021, 40(4):793-804.
Jiang Q, Dai J J, Wang D H, et al. Application of optical remote sensing to identifying granite pegmatite lithium deposits[J]. Mineral Deposits, 2021, 40(4):793-804.
[12] 潘桂堂, 肖庆辉. 中国大地构造图(1∶2500000)[M]. 北京: 地质出版社, 2015.
Pan G T, Xiao Q H. Tectonic map of China(1∶2500000)[M]. Beijing: Geology Press, 2015.
[13] 许志琴, 侯立玮, 王宗秀. 中国松潘-甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992.
Xu Z Q, Hou L W, Wang Z X. The Orogenic Process of the Songpan-Ganzi Belt in China[M]. Beijing: Geology Press, 1992.
[14] 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6):1091-1106.
Xu Z Q, Wang R C, Zhao Z B, et al. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6):1091-1106.
[15] Deschamps F, Duchêne S, de Sigoyer J, et al. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan ganze accretionary orogenic wedge(SW China)[J]. Journal of Petrology, 2017, 58(11):2221-2256.
[16] de Sigoyer J, Vanderhaeghe O, Duchêne S, et al. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting,Eastern Tibetan Plateau,China[J]. Journal of Asian Earth Sciences, 2014, 88:192-216.
[17] 时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学, 2009, 34(4):569-584.
Shi Z L, Zhang H F, Cai H M. Petrogenesis of strongly peraluminous granites in Markan area,Songpan fold belt and its tectonic implication[J]. Earth Science, 2009, 34(4):569-584.
[18] 张伟, 邹林, 范映武, 等. 四川金川县热达门锂辉石矿地质特征及矿床成矿模型浅析[J]. 四川地质学报, 2019, 39(s1):55-59.
Zhang W, Zou L, Fan Y W, et al. Geological characteristics and metallogenic model of Jedaias spodumene deposit in Jinchuan County,Sichuan Province[J]. Acta Geologica Sichuan, 2019, 39(s1):55-59.
[19] 李建康, 王登红, 付小方. 川西可尔因伟晶岩型稀有金属矿床的40Ar/39Ar年代及其构造意义[J]. 地质学报, 2006, 80(6):843-848.
Li J K, Wang D H, Fu X F. 40Ar/39Ar ages of the Keeryin pegmatite type rare metal deposit,western Sichuan,and its tectonic significances[J]. Acta Geologica Sinica, 2006, 80(6):843-848.
[20] 古城会. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 2014, 29(1):59-65.
Gu C H. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field,Sichuan Province[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(1):59-65.
[21] 庞博, 古城会, 李良波, 等. 四川省马尔康党坝锂辉石矿床地质特征及成因研究[J]. 四川有色金属, 2015(4):31-34.
Pang B, Gu C H, Li L B, et al. Geological characteristics and genesis of the spodumene deposit in Dangba,Barkam,Sichuan Province[J]. Sichuan Nonferrous Metals, 2015,(4):31-34.
[22] 景明, 邓涛. 马尔康白湾锂矿区地质特征及找矿标志[J]. 四川地质学报, 2016, 36(2):280-283.
Jing M, Deng T. Geological features and ore criteria of the Baiwan Li deposit in Barkam[J]. Acta Geologica Sichuan, 2016, 36(2):280-283.
[23] 饶魁元. 四川马尔康地拉秋锂矿床地质特征及找矿方向[J]. 四川有色金属, 2016 (1):54-57.
Rao K Y. The geological characteristics and ore exploration targeting of Dilaqiu lithium deposit in Maerkang county,Sichuan Pro-vince[J]. Sichuan Nonferrous Metals, 2016,(1):54-57.
[24] 马圣钞, 王登红, 刘善宝, 等. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 2019, 38(4):877-897.
Ma S C, Wang D H, Liu S B, et al. Mineral chemistry of micas from Ke’eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting[J]. Mineral Deposits, 2019, 38(4):877-897.
[25] 费光春, 方兵. 川西可尔因矿田李家沟锂辉石矿床矿石组构特征[J]. 矿物学报, 2015, 35(s1):1000.
Fei G C, Fang B. Fabric characteristics of Lijiagou spodumene deposit ore in Kerin ore field,western Sichuan[J]. Acta Mineralogica Sinica, 2015, 35(s1):1000.
[1] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[2] 郑雄伟, 彭孛, 尚坤. 基于国产卫星的遥感地质解译能力评估[J]. 自然资源遥感, 2021, 33(3): 1-10.
[3] 刘建宇, 陈玲, 李伟, 王根厚, 王博. 浅析构造层次理论在遥感地质工作中的应用[J]. 国土资源遥感, 2019, 31(3): 166-173.
[4] 胡官兵, 刘舫, 党伟, 杨坤, 陈庆松. 遥感技术在滇西南植被覆盖区地质填图中的应用[J]. 国土资源遥感, 2019, 31(2): 224-230.
[5] 郑鸿瑞, 徐志刚, 甘乐, 陈玲, 杨金中, 杜培军. 合成孔径雷达遥感地质应用综述[J]. 国土资源遥感, 2018, 30(2): 12-20.
[6] 董双发, 姜雪, 李名松, 王瑞军, 孙永彬. 基于国产卫星数据的全要素遥感地质解译体系研建——以干旱半干旱高寒山区为例[J]. 国土资源遥感, 2017, 29(s1): 21-26.
[7] 杨金中, 陈薇, 王辉. 西昆仑成矿带黑恰达坂温泉沟群含铁层位的圈定[J]. 国土资源遥感, 2017, 29(3): 191-195.
[8] 赵玉灵, 杨金中, 付宗堂. 遥感地质图图例的制作与研究[J]. 国土资源遥感, 2017, 29(2): 226-231.
[9] 张微, 金谋顺, 张少鹏, 陈玲, 钟昶, 董丽娜. 高分遥感卫星数据在东昆仑成矿带找矿预测中的应用[J]. 国土资源遥感, 2016, 28(2): 112-119.
[10] 史俊波, 康孔跃, 张辉善, 杨伟, 张杰, 刘恒轩, 任清军. SPOT5数据在西昆仑麻扎构造混杂岩带填图中的应用[J]. 国土资源遥感, 2016, 28(1): 107-113.
[11] 郐开富, 徐文斌, 黄智才, 李素. 西澳皮尔巴拉地块BIF型铁矿遥感地质特征与找矿研究[J]. 国土资源遥感, 2015, 27(4): 93-101.
[12] 付长亮, 杨清华, 姜琦刚, 王梦飞, 蒋校. 遥感技术在境外地质调查中的应用——以津巴布韦大岩墙为例[J]. 国土资源遥感, 2015, 27(4): 85-92.
[13] 董丽娜, 张微, 王雪, 陈玲, 杨金中, 莫子奋. 江西盛源火山盆地遥感地质解译与铀矿找矿前景分析[J]. 国土资源遥感, 2015, 27(4): 102-108.
[14] 张焜, 李宗仁, 马世斌. 基于ZY-102C星数据的遥感地质解译——以塔吉克斯坦帕米尔地区为例[J]. 国土资源遥感, 2015, 27(3): 144-153.
[15] 梁树能, 甘甫平, 魏红艳, 肖晨超, 张振华, 魏丹丹. 哈密遥感地质资源评价综合应用野外试验场建设进展[J]. 国土资源遥感, 2015, 27(2): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发