Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 30-38    DOI: 10.6046/zrzyyg.2023341
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
星地协同下地块尺度柑橘黄龙病监测技术研究
谢国雪1(), 黄启厅1, 杨绍锷1, 梁永检2, 覃泽林1(), 苏秋群1
1.广西壮族自治区农业科学院农业科技信息研究所,南宁 530007
2.广西南亚热带农业科学研究所,崇左 532415
Exploring the monitoring technology for Huanglongbing at the plot scale under satellite-ground collaboration
XIE Guoxue1(), HUANG Qiting1, YANG Shaoe1, LIANG Yongjian2, QIN Zelin1(), SU Qiuqun1
1. Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
2. Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo 532415, China
全文: PDF(4135 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现大区域地块尺度柑橘黄龙病高效监测,该文以广西壮族自治区蒙山县为例,按季度地面采集健康、黄化、黄龙病柑橘叶片样本,完成聚合酶链反应(polymerace chain reaction,PCR)、叶绿素、高光谱检测,分析不同状态柑橘特征变化规律,提取监测黄龙病有效波段和影像特征; 构建健康柑橘监测模型缩减待判别对象,形成柑橘生长异常地块,基于多时序Sentinel-2影像有效特征,集成多分类器算法提取柑橘黄龙病受灾地块。研究结果发现: ①检测结果显示黄龙病与黄化叶片样本的叶绿素值十分相近,3月、12月黄龙病柑橘叶绿素值高于黄化柑橘,6月、9月相反; ②高光谱曲线表明12月是识别黄龙病、黄化的重要时期,其中波长530~650,740~1 050 nm是诊断黄龙病、黄化有效范围; ③Sentinel-2影像12月时相特征指数归一化植被指数(normalized difference vegetation index,NDVI)、地表水分指数(land surface water index,LSWI)、绿度归一化植被指数(green normalized difference vegetative index,GNDVI)和倒红边叶绿素指数(inverted red-edge chlorophyll index,IRECI)能够有效分离柑橘生长健康和生长异常地块; ④10—12月及翌年1—2月时序Sentinel-2影像特征指数NDVI、改进归一化差异水体指数(modified normalized difference water index,MNDWI)、归一化差异水体指数(normalized difference water index,NDWI)、GNDVI、IRECI、叶绿素吸收指数(modified chlorophyll absorption ratio index 2,MCARI2)、归一化红边指数(normalized difference index,NDI45)、特征色素(pigment specific simple,PSSRa)监测黄龙病具有优势; ⑤蒙山县黄龙病地块识别准确率为86.6%、漏检率为7.8%、错误率为10.4%,2021年柑橘黄龙病地块964个,面积220.13 hm2,大面积黄龙病发病率为2.02%,主要集中在新圩镇、文圩镇、蒙山镇、夏宜瑶族乡等。卫星遥感与地面实测结合能够实现大区域柑橘黄龙病地块监测,文章研究技术可为柑橘黄龙病大范围监测防控提供新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢国雪
黄启厅
杨绍锷
梁永检
覃泽林
苏秋群
关键词 卫星遥感地面实测地块尺度柑橘黄龙病监测技术    
Abstract

To efficiently monitor citrus greening (also called Huanglongbing in Chinese) at the large plot scale, this study investigated the healthy, yellowing, and Huanglongbing-affected citrus leaves sampled quarterly from the ground in Mengshan County in Guangxi Province. By performing polymerase chain reaction (PCR), chlorophyll content, and hyperspectral detections on these leaf samples, this study analyzed the variation patterns of citrus characteristics under different states, extracting the effective bands and image features for Huanglongbing monitoring. Furthermore, this study constructed a monitoring model for healthy citrus to reduce the objects to be discriminated and identify abnormal citrus growth plots. Finally, this study extracted the Huanglongbing-affected plots using a multi-classifier algorithm based on the effective features from multitemporal Sentinel-2 images. The results of this study indicate that the Huanglongbing-affected and yellowing leaf samples yielded highly similar chlorophyll contents. In March and December, the Huanglongbing-affected citrus exhibited higher chlorophyll content compared to the yellowing citrus. However, the case was the opposite in June and September. The hyperspectral curves suggest that December is a significant period for identifying Huanglongbing and yellowing. The wavelengths ranging from 530 nm to 650 nm and 740 nm to 1050 nm proved effective for diagnosing Huanglongbing and yellowing. The feature indices based on the Sentinel-2 image for December, including the normalized difference vegetation index (NDVI), land surface water index (LSWI), nitrogen reflectance index (NRI), green normalized difference vegetation index (GNDVI), and inverted red edge chlorophyll index (IRECI), could effectively distinguish between healthy and abnormal growth plots of citrus. The feature indices based on the Sentinel-2 images covering periods from October to December and January to February of the following year, including the NDVI, modified normalized difference water index (MNDWI), normalized difference water index (NDWI), GNDVI, inverted red-edge chlorophyll index (IRECI), modified chlorophyll absorption ratio index 2 (MCARI2), normalized difference index based on Landsat bands 4 and 5 (NDI45), and pigment specific simple ratio chlorophyll index (PSSRa), showed advantages in monitoring Huanglongbing. The identification accuracy of Huanglongbing-affected plots in Mengshan County was 86.6 %, with a missed detection rate of 7.8 % and an error rate of 10.4 %. In 2021, Mengshan County held 964 Huanglongbing-affected plots covering an area of 220.13 hm2, with an incidence rate of 2.02 % for large-scale Huanglongbing, mainly concentrated in Xinxu, Wenxu, and Mengshan towns, and Xiayi Yao Township. The combination of satellite remote sensing and ground measurement enables large-scale monitoring of Huanglongbing-affected plots. The monitoring technology in this study provides novel insights for the large-scale monitoring, prevention, and control of Huanglongbing.

Key wordssatellite remote sensing    ground measurement    plot scale    Huanglongbing    monitoring technology
收稿日期: 2023-11-06      出版日期: 2025-05-09
ZTFLH:  TP79  
  S127  
基金资助:广西科技重大专项“广西柑橘数字化果园关键技术研究与应用示范”(桂科AA22036002);广西创新驱动发展专项“柑橘黄龙病综合防控技术研究与示范”(桂科AA18118046);及广西农业科学院科技发展基金资助项目“多指标综合的柑橘黄龙病风险评估技术研究”(桂农科2022JM47)
通讯作者: 覃泽林(1968-),男,研究员,研究方向为产业经济与信息。Email: alinqin@gxaas.net
作者简介: 谢国雪(1989-),女,硕士,高级工程师,研究方向为农业遥感技术应用研究。Email: gxnky2020@163.com
引用本文:   
谢国雪, 黄启厅, 杨绍锷, 梁永检, 覃泽林, 苏秋群. 星地协同下地块尺度柑橘黄龙病监测技术研究[J]. 自然资源遥感, 2025, 37(2): 30-38.
XIE Guoxue, HUANG Qiting, YANG Shaoe, LIANG Yongjian, QIN Zelin, SU Qiuqun. Exploring the monitoring technology for Huanglongbing at the plot scale under satellite-ground collaboration. Remote Sensing for Natural Resources, 2025, 37(2): 30-38.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023341      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/30
Fig.1  柑橘黄龙病地块监测技术路线
指数 简称 全称 计算方法 描述 类型 参考文献
归一化植被指数 NDVI normalized difference
vegetation index
(B8-B4)/(B8+B4) 常用于反映植被长势、健康情况等,覆盖度较低时受裸露土壤干扰 传统指数 [16]
地表水分指数 LSWI land surface water
index
(B8-B11)/(B8+B11) 用于监测植被冠层水分含量 传统指数 [17]
改进归一化差异水体指数 MNDWI modified normalized
difference water index
(B3-B11) /(B3+B11) 提取水体敏感,有效降低城镇、植被噪音影响 传统指数 [18]
归一化差异水体指数 NDWI normalized difference
water index
(B3-B8) /(B3+B8) 最大程度抑制植被的信息,有效突出水体信息 传统指数 [18]
氮反射指数 NRI nitrogen reflectance index (B3-B4) /(B3+B4) 与叶片氮素含量显著相关,能够反演叶片氮含量的变化情况 传统指数 [19]
绿度归一化植被指数 GNDVI green normalized difference vegetative index (B5-B2) /(B5+B2) 评估光合活性,用于确定植物冠层吸收水氮常用植被指数 红边指数 [20]
倒红边叶绿素指数 IRECI inverted red-edge
chlorophyll index
(B7-B4)/(B5/B6) 与叶绿素含量和叶面积指数相关性好,用于表征叶绿素含量 红边指数 [21]
叶绿素吸收指数 MCARI2 modified chlorophyll
absorption ratio index 2
[(B5-B4)-0.2(B5-B3)](B6/B5) 对植被叶绿素含量敏感,值越高表明叶绿素含量越高 红边指数 [22]
归一化红边指数 NDI45 normalized difference
index
(B5-B4) /(B5+B4) NDVI线性更强,对监测植被茂盛区有优势 红边指数 [23]
归一化差值红边指数 NDRE1 normalized difference red-edge 1 (B6-B5) /(B6+B5) 用红边代替NDVI的红边和近红外波段,用于反演植被叶面积指数和叶绿素含量 红边指数 [24]
归一化多波段干旱指 NMDI normalized multi -band
drought index
[B8A-(B11-B12)]/[B8A+(B11-B12)] 适用于对土壤与植被水分含量的监测 红边指数 [25]
特征色素简单比值指数 PSSRa pigment specific simple
ratio(chlorophyll) index
B7/B4 用于量化植被冠层色素含量 红边指数 [26]
Tab.1  影像多特征指数详情
Fig.2  柑橘叶片样本叶绿素检测统计图
Fig.3  柑橘叶片样本高光谱曲线图
Fig.4  多特征时间序列均值曲线图
Fig.5  柑橘黄龙病地块监测成果图
乡镇名称 面积/hm2 地块数量/个
健康 黄龙病 生长异常 合计 健康 黄龙病 生长异常 合计
蒙山镇 1 064.90 28.05 18.99 1 111.94 5 544 164 86 5 794
西河镇 2 277.30 10.67 8.42 2 296.39 10 531 46 36 10 613
新圩镇 2 114.12 90.43 15.78 2 220.33 9 422 360 84 9 866
文圩镇 2 251.72 55.03 41.02 2 347.77 10 750 235 217 11 202
黄村镇 1 103.29 7.54 7.33 1 118.16 4 345 40 38 4 423
陈塘镇 942.24 1.04 0.78 944.06 4 073 7 6 4 086
汉豪乡 535.23 3.17 0.67 539.07 1 847 11 8 1 866
长坪瑶族乡 70.22 10.04 0.82 81.08 246 35 4 285
夏宜瑶族乡 232.23 14.16 7.02 253.41 1 037 66 30 1 133
合计 10 591.25 220.13 100.83 10 912.21 47 795 964 509 49 268
Tab.2  蒙山县柑橘黄龙病监测统计表
[1] 谢国雪, 黄启厅, 杨绍锷, 等. 基于中高分影像的丘陵区柑橘种植地块提取[J]. 南方农业学报, 2021, 52(12):3454-3462.
Xie G X, Huang Q T, Yang S E, et al. Extraction of citrus planting plots based on medium-high different images[J]. Journal of Southern Agriculture, 2021, 52(12):3454-3462.
[2] 白先进, 赵小龙, 娄兵海, 等. 回顾广西柑橘黄龙病防控(1982-2020)[J]. 南方园艺, 2020, 31(6):5-16.
Bai X J, Zhao X L, Lou B H, et al. A review of citrus Huanglongbing control in Guangxi from 1982 to 2020[J]. Southern Horticulture, 2020, 31(6):5-16.
[3] 鹿连明, 范国成, 胡秀荣, 等. 田间柑橘植株不同部位黄龙病菌的PCR检测及发病原因分析[J]. 植物保护, 2011, 37(2):45-49.
Lu L M, Fan G C, Hu X R, et al. PCR detection of huanglongbing pathogen in different parts of citrus plants in the field and analysis of the cause of the disease[J]. Plant Protection, 2011, 37(2):45-49.
[4] 翁海勇, 何城城, 许金钗, 等. 叶绿素荧光成像技术下的柑橘黄龙病快速诊断[J]. 农业工程学报, 2020, 36(12):196-203.
Weng H Y, He C C, Xu J C, et al. Rapid detection of citrus Huanglongbing based on chlorophyll fluorescence imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12):196-203.
[5] 柏自琴, 周常勇. 柑橘黄龙病病原分化及发生规律研究进展[J]. 中国农学通报, 2012, 28(1):133-137.
Bai Z Q, Zhou C Y. The research progress of Citrus huanglongbing on pathogen diversity and epidemiology[J]. Chinese Agricultural Science Bulletin, 2012, 28(1):133-137.
[6] 余继华, 汪恩国, 杨晓, 等. 柑橘黄龙病老龄果园发病力与时序发生规律研究[J]. 农学学报, 2017, 7(4):10-14.
doi: 10.11923/j.issn.2095-4050.cjas16120026
Yu J H, Wang E G, Yang X, et al. Citrus liberobacter asiaticum morbidity and timing patterns in old orchards[J]. Journal of Agriculture, 2017, 7(4):10-14.
doi: 10.11923/j.issn.2095-4050.cjas16120026
[7] Li X, Lee W S, Li M, et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J]. Computers and Electronics in Agriculture, 2012, 83:32-46.
[8] 梅慧兰, 邓小玲, 洪添胜, 等. 柑橘黄龙病高光谱早期鉴别及病情分级[J]. 农业工程学报, 2014, 30(9):140-147.
Mei H L, Deng X L, Hong T S, et al. Early detection and grading of citrus huanglongbing using hyperspectral imaging technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9):140-147.
[9] Weng H, Lyu J, Cen H, et al. Hyperspectral reflectance imaging combined with carbohydrate metabolism analysis for diagnosis of citrus Huanglongbing in different seasons and cultivars[J]. Sensors and Actuators B:Chemical, 2018, 275:50-60.
[10] 兰玉彬, 朱梓豪, 邓小玲, 等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报, 2019, 35(3):92-100.
Lan Y B, Zhu Z H, Deng X L, et al. Monitoring and classification of citrus Huanglongbing based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):92-100.
[11] 黄梓效. 基于地-空多源遥感的柑橘黄龙病智能识别技术的研究[D]. 广州: 华南农业大学, 2020.
Huang Z X. Research on intelligent recognition technology of citrus Huanglongbing based on ground-air multi-source remote sensing[D]. Guangzhou: South China Agricultural University, 2020.
[12] Xu F, Hao Z, Huang L, et al. Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy[J]. Applied Physics B, 2020, 126(3):43.
[13] 何城城. 波谱成像技术下的柑橘黄龙病快速检测方法及设备研发[D]. 福州: 福建农林大学, 2022.
He C C. Rapid detection citrus HLB by developing a handheld device based on spectral imaging technology[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022.
[14] 范世达, 马伟荣, 姜文博, 等. 基于深度学习的柑橘黄龙病远程诊断技术初探[J]. 中国果树, 2022(4):76-79,86,133.
Fan S D, Ma W R, Jiang W B, et al. Preliminary study on remote diagnosis technology of Citrus Huanglongbing based on deep learning[J]. China Fruits, 2022(4):76-79,86,133.
[15] 谢国雪, 黄启厅, 杨绍锷, 等. 基于遥感影像的丘陵区柑橘种植地块监测方法及系统:中国,CN111709379B[P]. 2023-04-18.
Xie G, Huang Q, Shao E Y. Hilly area citrus planting plot monitoring method and system based on remote sensing images:China,CN111709379B[P]. 2023-04-18.
[16] 梁锦涛, 陈超, 张自力, 等. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35 (3):35-42.doi:10.6046/zrzyyg.2022493.
Liang J T, Chen C, Zhang Z L, et al. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35 (3):35-42.doi:10.6046/zrzyyg.2022493.
[17] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
[18] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[19] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150.
[20] 刘伟, 杨共强, 徐飞, 等. 近地高光谱和低空航拍数字图像遥感监测小麦条锈病的比较研究[J]. 植物病理学报, 2018, 48(2):223-227.
doi: 10.13926/j.cnki.apps.000170
Liu W, Yang G Q, Xu F, et al. Comparisons of detection of wheat stripe rust using hyper-spectrometer and UAV aerial photography[J]. Acta Phytopathologica Sinica, 2018, 48(2):223-227.
doi: 10.13926/j.cnki.apps.000170
[21] Guyot G, Baret F. Utilisation de la haute resolution spectrale pour suivre L'etat des couverts vegetaux[C]// French National Institute for Agriculture,Food,and Environment (INRAE).Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, 1988,279-286.
[22] Wu C, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices:Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8/9):1230-1241.
[23] Delegido J, Verrelst J, Alonso L, et al. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content[J]. Sensors, 2011, 11(7):7063-7081.
doi: 10.3390/s110707063 pmid: 22164004
[24] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L.and Acer platanoides L.leaves.spectral features and relation to chlorophyll estimation[J]. Journal of Plant Physiology, 1994, 143(3):286-292.
[25] 张红卫, 陈怀亮, 周官辉, 等. 归一化多波段干旱指数在农田干旱监测中的应用[J]. 科技导报, 2009, 27(11):23-26.
Zhang H W, Chen H L, Zhou G H, et al. Application of normalized multiband drought index method in cropland drought monitoring[J]. Science & Technology Review, 2009, 27(11):23-26.
[26] Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales[J]. Remote Sensing of Environment, 1998, 66(3):273-285.
[1] 凌肖露, 陈朝荣, 郭维栋, 秦凯, 张锦龙. ESA CCI土壤湿度资料在中国东部的综合评估[J]. 自然资源遥感, 2024, 36(4): 92-106.
[2] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[3] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[4] 周小迦. 丘陵地带耕地撂荒遥感监测应用研究[J]. 自然资源遥感, 2024, 36(1): 235-241.
[5] 李恺霖, 廖廓, 党皓飞. 内陆与近岸水体的色度学遥感研究进展[J]. 自然资源遥感, 2023, 35(1): 15-26.
[6] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[7] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[8] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[9] 古海玲, 陈超, 芦莹, 褚衍丽. 基于卫星遥感技术的区域经济发展模型构建[J]. 国土资源遥感, 2020, 32(2): 226-232.
[10] 郑凯端, 陈健, 周杰, 高绍鑫. 长三角地区一次严重雾霾事件的多源遥感监测研究[J]. 国土资源遥感, 2018, 30(1): 224-232.
[11] 杨如军, 谢国雪. 国产卫星数据在国土资源监管中的探讨——以广西壮族自治区为例[J]. 国土资源遥感, 2017, 29(s1): 52-57.
[12] 陈国茜, 祝存兄, 肖建设, 校瑞香. 青海高寒草地春季火情的多源卫星遥感动态监测[J]. 国土资源遥感, 2017, 29(4): 185-189.
[13] 曹永兴, 薛志航. 基于高分辨率影像的城市地区气溶胶反演研究述评[J]. 国土资源遥感, 2016, 28(3): 1-6.
[14] 郑宗生, 周云轩, 田波, 王建, 刘志国. 植被对潮沟发育影响的遥感研究——以崇明东滩为例[J]. 国土资源遥感, 2014, 26(3): 117-124.
[15] 官晓, 周萍, 陈圣波. 基于地面实测光谱的土壤有机质含量预测[J]. 国土资源遥感, 2014, 26(2): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发