Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 19-29    DOI: 10.6046/zrzyyg.2023333
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于宽度学习的非监督SAR影像变化检测
邵攀1,2(), 管宗胜1,2, 贾付文1,2()
1.三峡大学湖北省水电工程智能视觉监测重点实验室,宜昌 443002
2.三峡大学计算机与信息学院,宜昌 443002
Unsupervised change detection using SAR images based on the broad learning system
SHAO Pan1,2(), GUAN Zongsheng1,2, JIA Fuwen1,2()
1. Hubei Key Laboratory of Intelligent Vision Monitoring for Hydroelectric Engineering, China Three Gorges University, Yichang 443002, China
2. College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China
全文: PDF(6080 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

深度学习合成孔径雷达(synthetic aperture Radar,SAR)影像变化检测是遥感领域的重要研究方向。针对现有深度学习SAR影像变化检测生成的训练样本不够可靠和模型训练耗时严重2个方面不足,将宽度学习(broad learning system,BLS)引入变化检测,提出一种全新的非监督SAR影像变化检测方法。首先,通过将邻域信息引入相似性算子、自适应双阈值分割、超像素修正和视觉显著性分析,提出一种可靠的预分类方法,从而生成预分类图,获取训练样本; 然后,利用训练样本训练BLS网络,生成BLS变化检测预测图; 最后,通过双阶段投票融合预分类图和BLS预测图,生成最终变化检测图。5组真实SAR影像数据的实验结果表明: 该文方法能够得到更加可靠的训练样本,能够显著提高变化检测精度,其效率显著优于深度学习SAR影像变化检测模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵攀
管宗胜
贾付文
关键词 非监督变化检测合成孔径雷达宽度学习自适应双阈值超像素视觉显著性分析    
Abstract

Change detection using synthetic aperture radar (SAR) images based on deep learning has been a significant research topic in the field of remote sensing. However, it is limited by unreliable training samples and highly time-consuming training. Hence, this study proposed a novel unsupervised change detection method using SAR images based on the broad learning system (BLS). First, a reliable pre-classification method is presented by incorporating neighborhood information into similarity operators, adaptive dual-threshold segmentation, superpixel correction, and visual saliency analysis. This pre-classification method generates a pre-classification map and corresponding training samples. Second, the BLS network is trained using the training samples to generate the BLS-based prediction map for change detection. Third, the pre-classification map and the BLS-based prediction map are fused through two-stage voting to generate the final change detection map. The experimental results of five real SAR image datasets show that the proposed method can produce more reliable training samples and achieve higher accuracy in change detection. Moreover, its efficiency is significantly higher than the change detection model using SAR images based on deep learning.

Key wordsunsupervised change detection    synthetic aperture radar    broad learning system    adaptive dual threshold    superpixel    visual saliency analysis
收稿日期: 2023-11-03      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“模糊拓扑空间下高分辨率遥感影像多尺度融合变化检测方法研究”(41901341);湖北省自然科学基金一般面上项目“集成局部和全局特性的通道深度交互融合建筑物提取方法研究”(2024AFB867)
通讯作者: 贾付文(1995-),男,硕士研究生,主要从事遥感影像变化检测研究。Email: jiafw@ctgu.edn.cn
作者简介: 邵 攀(1985-),男,博士,副教授,主要从事遥感图像处理、变化检测、人工智能等研究。Email: panshao@whu.edu.cn
引用本文:   
邵攀, 管宗胜, 贾付文. 基于宽度学习的非监督SAR影像变化检测[J]. 自然资源遥感, 2025, 37(2): 19-29.
SHAO Pan, GUAN Zongsheng, JIA Fuwen. Unsupervised change detection using SAR images based on the broad learning system. Remote Sensing for Natural Resources, 2025, 37(2): 19-29.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023333      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/19
Fig.1  所提出的BLS变化检测方法流程
Fig.2  自适应双阈值划分DI示意图
Fig.3  预分类图生成过程示例
Fig.4  BLS模型训练过程示意图
Fig.5  BLS的网络结构
Fig.6  数据源
Fig.7  KC值随参数K,T0k的变化趋势
数据集 PCAKM GaborTLC ELM PCANet CWNN RUSACD BLS 变化参考图
A
B
C
D
E
Tab.1  不同方法在5组数据上的变化检测结果
数据
方法 FA MD OE KC IoU
A PCAKM 27 4 311 4 338 0.780 1 0.675 9
GaborTLC 5 4 881 4 886 0.747 3 0.634 6
ELM 9 4 801 4 810 0.752 0 0.641 9
PCANet 2 4 717 4 719 0.757 3 0.647 0
CWNN 34 3 946 3 980 0.801 1 0.692 2
RUSACD 8 4 806 4 814 0.751 7 0.640 1
BLS 307 2 532 2 839 0.866 1 0.792 4
B PCAKM 1 602 633 2 235 0.754 0 0.616 7
GaborTLC 1 863 704 2 567 0.724 3 0.580 4
ELM 708 1 176 1 884 0.758 2 0.620 3
PCANet 641 1 235 1 876 0.755 6 0.616 8
CWNN 1 163 695 1 858 0.785 6 0.657 0
RUSACD 538 1 164 1 702 0.777 4 0.644 9
BLS 824 706 1 530 0.816 5 0.698 8
C PCAKM 41 573 7 41 580 0.040 7 0.031 2
GaborTLC 22 024 4 22 026 0.090 1 0.045 8
ELM 6 199 25 6 224 0.258 6 0.175 5
PCANet 12 826 12 12 838 0.155 7 0.094 2
CWNN 13 217 50 13 267 0.146 8 0.089 1
RUSACD 239 176 415 0.849 7 0.741 1
BLS 280 182 462 0.832 8 0.716 2
D PCAKM 65 783 41 65 824 0.016 6 0.008 7
GaborTLC 33 520 80 33 600 0.041 6 0.016 2
ELM 36 336 112 36 448 0.035 7 0.024 4
PCANet 45 968 48 46 016 0.028 9 0.020 1
CWNN 17 072 384 17 456 0.055 7 0.034 7
RUSACD 288 256 544 0.714 1 0.557 5
BLS 181 208 389 0.806 5 0.677 4
E PCAKM 430 724 172 693 603 417 0.520 7 0.424 0
GaborTLC 231 003 212 652 443 655 0.590 4 0.476 7
ELM 444 164 175 766 619 930 0.513 4 0.416 1
PCANet 370 534 171 819 542 353 0.553 8 0.450 7
CWNN 498 038 150 816 648 854 0.510 1 0.418 0
RUSACD 214 101 251 318 465 419 0.553 5 0.435 9
BLS 36 699 163 666 200 365 0.794 8 0.693 4
Tab.2  5组数据集上变化检测图的精度指标
方法 数据集
A B C D E
PCAKM 1.1 0.93 0.97 1.03 18.45
GaborTLC 2.38 4.12 6.02 6.72 1.8×102
ELM 9.03 13.66 12.03 15.26 4.54×102
PCANet 5.06×102 7.84×102 1.04×103 1.36×103 1.09×105
CWNN 5.14×102 6.57×102 6.77×102 7.02×102 8.96×103
RUSACD 2.87×102 3.57×102 3.39×102 3.71×102 1.63×104
BLS 14.65 19.77 13.92 16.23 6.15×102
Tab.3  不同方法在5组数集据上的运行时间
方法 数据集
A B C D E
ELM 0.801 4 0.862 1 0.205 3 0.045 4 0.617 7
PCANet 0.809 3 0.885 1 0.144 3 0.039 1 0.671 1
CWNN 0.822 2 0.868 4 0.184 1 0.076 2 0.647 9
RUSACD 0.713 1 0.760 7 0.920 0 0.907 1 0.564 8
BLS 0.904 2 0.876 6 0.877 4 0.913 7 0.817 2
Tab.4  不同方法获取“伪标记样本”的KC
方法 数据集
A B C D E
ELM* 0.873 8 0.677 8 0.819 2 0.580 3 0.656 5
PCANet* 0.675 2 0.792 7 0.823 3 0.813 2 0.633 5
CWNN* 0.780 1 0.809 5 0.841 1 0.647 9 0.723 1
RUSACD* 0.795 4 0.786 9 0.849 7 0.791 6 0.717 3
BLS 0.866 1 0.816 5 0.832 8 0.806 5 0.794 8
Tab.5  不同方法的KC
[1] Gong M G, Zhao J J, Liu J, et al. Change detection in synthetic aperture Radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):125-138.
doi: 10.1109/TNNLS.2015.2435783 pmid: 26068879
[2] Li W C, Ma P F, Wang H P, et al. SAR-TSCC:A novel approach for long time series SAR image change detection and pattern analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5203016.
[3] Hamidi E, Peter B G, Muñoz D F, et al. Fast flood extent monitoring with SAR change detection using google earth engine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4201419.
[4] Li S C, Wang Y J, Cai H F, et al. MF-SRCDNet:Multi-feature fusion super-resolution building change detection framework for multi-sensor high-resolution remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 119:103303.
[5] Li Y Y, Peng C, Chen Y Q, et al. A deep learning method for change detection in synthetic aperture Radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8):5751-5763.
[6] Gao F, Dong J Y, Li B, et al. Automatic change detection in synthetic aperture Radar images based on PCANet[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1792-1796.
[7] Zhang X Z, Su H, Zhang C, et al. Robust unsupervised small area change detection from SAR imagery using deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:79-94.
[8] Qu X F, Gao F, Dong J Y, et al. Change detection in synthetic aperture Radar images using a dual-domain network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:4013405.
[9] 王建明, 史文中, 邵攀. 自适应距离和模糊拓扑优化的模糊聚类SAR影像变化检测[J]. 测绘学报, 2018, 47(5):611-619.
doi: 10.11947/j.AGCS.2018.20160607
Wang J M, Shi W Z, Shao P. Change-detection method for SAR image using adaptive distance and fuzzy topology optimization-based fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):611-619.
doi: 10.11947/j.AGCS.2018.20160607
[10] 公茂果, 苏临之, 李豪, 等. 合成孔径雷达影像变化检测研究进展[J]. 计算机研究与发展, 2016, 53(1):123-137.
Gong M G, Su L Z, Li H, et al. A survey on change detection in synthetic aperture Radar imagery[J]. Journal of Computer Research and Development, 2016, 53(1):123-137.
[11] Ban Y F, Yousif O A. Multitemporal spaceborne SAR data for urban change detection in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4):1087-1094.
[12] Ma J J, Li D S, Tang X, et al. Unsupervised SAR image change detection based on feature fusion of information transfer[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20:4004905.
[13] Li H C, Celik T, Longbotham N, et al. Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2458-2462.
[14] Shao P, Shi W Z, Liu Z W, et al. Unsupervised change detection using fuzzy topology-based majority voting[J]. Remote Sensing, 2021, 13(16):3171.
[15] Gao F, Wang X, Gao Y H, et al. Sea ice change detection in SAR images based on convolutional-wavelet neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1240-1244.
[16] Vudattu V S, Pati U C. Change detection in synthetic aperture Radar images based on a spatial pyramid pooling attention network (SPPANet)[J]. Remote Sensing Letters, 2023, 14(11):1139-1149.
[17] Chen C L P, Liu Z L. Broad learning system:An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1):10-24.
[18] 邵攀. 非监督遥感变化检测模糊方法研究[D]. 武汉: 武汉大学, 2016.
Shao P. Study on fuzzy unsupervised change detection methods based on remotely sensed image[D]. Wuhan: Wuhan University, 2016.
[19] Perez A, Gonzalez R C. An iterative thresholding algorithm for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(6): 742-751.
pmid: 21869436
[20] Ghosh A, Mishra N S, Ghosh S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images[J]. Information Sciences, 2011, 181(4):699-715.
[21] Shao P, Shi W Z, He P F, et al. Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm[J]. Remote Sensing, 2016, 8(3):264.
[22] Bovolo F, Bruzzone L, Marconcini M. A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2070-2082.
[23] 宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015, 20(5):599-608.
Song X Y, Zhou L L, Li Z G, et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015, 20(5):599-608.
[24] 袁巧, 程艳芬, 陈先桥. 多先验特征与综合对比度的图像显著性检测[J]. 中国图象图形学报, 2018, 23(2):239-248.
Yuan Q, Cheng Y F, Chen X Q. Saliency detection based on multiple priorities and comprehensive contrast[J]. Journal of Image and Graphics, 2018, 23(2):239-248.
[25] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
[26] Gao F, Dong J Y, Li B, et al. Change detection from synthetic aperture Radar images based on neighborhood- based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4):046019.
[27] Gong M G, Zhou Z Q, Ma J J. Change detection in synthetic aperture Radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2012, 21(4):2141-2151.
[28] Zhao S J, Zhang X L, Xiao P F, et al. Exchanging dual-encoder-decoder:A new strategy for change detection with semantic gui-dance and spatial localization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4508016.
[1] 杨辰, 金源, 邓飞, 史绪国. 基于SBAS InSAR技术的叙古高速沿线滑坡识别与监测[J]. 自然资源遥感, 2025, 37(1): 161-168.
[2] 庄会富, 王鹏, 苏亚男, 张祥, 范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测[J]. 自然资源遥感, 2024, 36(4): 218-228.
[3] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[4] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[5] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[6] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[7] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[8] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[9] 张锐, 尤淑撑, 杜磊, 禄競, 何芸, 胡勇. 基于改进超像素和标记分水岭的高分辨率遥感影像分割方法[J]. 国土资源遥感, 2021, 33(1): 86-95.
[10] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[11] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[12] 江珊, 王春, 宋宏利, 刘玉锋. 基于SAR与光学遥感数据相结合的农作物种植类型识别研究[J]. 国土资源遥感, 2020, 32(4): 105-110.
[13] 周光宇, 刘邦权, 张亶. 基于变分模态分解的SAR图像目标识别方法[J]. 国土资源遥感, 2020, 32(2): 33-39.
[14] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[15] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发