Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 194-203    DOI: 10.6046/zrzyyg.2023376
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于生态系统服务的关中平原生态安全格局构建
惠乐1(), 王浩1(), 刘嘉敏1, 唐不甜1, 张伟娟2
1.陕西师范大学地理科学与旅游学院,西安 710119
2.福建师范大学马克思主义学院,福州 350117
Construction of an ecological security pattern in the Guanzhong Plain based on ecosystem services
HUI Le1(), WANG Hao1(), LIU Jiamin1, TANG Butian1, ZHANG Weijuan2
1. School of Geography and Tourism of Shaanxi Normal University, Xi’an 710119, China
2. College of Marxism, Fujian Normal University, Fuzhou 350117, China
全文: PDF(3806 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 生态安全格局被用来表征生态系统的健康性及可持续性,对增进人类福祉有至关重要的作用。该研究利用水源涵养、土壤保持和生物栖息地提供3种生态系统服务识别关中平原生态源地,并结合区域特征选择水土流失敏感性、归一化植被指数和夜间灯光3种干扰因素,修正基本阻力面,识别生态廊道。结果显示: ①关中平原一级和二级生态源地面积分别为3 011.85 km2和8 434.51 km2,占比分别为5.22%和14.62%,主要分布在南部秦岭山脉、宝鸡北部丘陵沟壑区,以及咸阳、铜川和渭南三市交接县区,以多山、植被覆盖度高为主要特点; ②经过阻力面修正后,关中平原生态廊道减少61条,长度共计减少1 613.4 km,廊道分布发生显著变化,提高了识别的合理性。该研究为构建区域生态安全格局提供了新研究案例,并为关中平原生态保护和城市规划提供了数据参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠乐
王浩
刘嘉敏
唐不甜
张伟娟
关键词 关中平原生态安全格局生态系统服务生态廊道    
Abstract

The ecological security pattern serves as an indicator of ecosystem health and sustainability, playing a crucial role in enhancing human well-being. This study identified ecological source areas in the Guanzhong Plain based on three ecosystem services, including water conservation, soil conservation, and habitat provision. Considering regional characteristics, this study selected soil erosion sensitivity index, normalized difference vegetation index (NDVI), and nighttime lighting as disturbance factors to correct the basic resistance surface and identify ecological corridors. The results indicate that the primary and secondary ecological source areas in the Guanzhong Plain cover 3 011.85 km2 and 8 434.51 km2, respectively, corresponding to 5.22% and 14.62% of the total area. These areas, characterized by mountainous terrain and high vegetation cover, are primarily distributed in the Qinling Mountains in the south, the hilly and gully regions in northern Baoji City, and the junctions of Xianyang, Tongchuan, and Weinan cities. The resistance surface correction for Guanzhong Plain reduced 61 ecological corridors (total length: 1 613.4 km), leading to significant changes in their distribution, and ultimately rationalizing corridor identification. Overall, this study provides a novel case for constructing regional ecological security patterns and data support for ecological conservation and urban planning in the Guanzhong Plain.

Key wordsGuanzhong Plain    ecological security pattern    ecosystem services    ecological corridor
收稿日期: 2023-12-13      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:陕西省自然科学基础研究计划面上项目“无人机与卫星遥感数据协同的干旱区土壤水分反演研究”(2023-JC-YB-229);国家自然科学基金“社会-生态系统视角下延河流域生态修复调控与优化研究”(42371103)
通讯作者: 王 浩(1986-),男,副研究员,博士,主要从事生态恢复效益评估和生态安全评价研究。Email: foreva@snnu.edu.cn
作者简介: 惠 乐(2002-),女,硕士研究生,主要从事水土资源评价与规划和生态系统服务研究。Email: 2002huile@snnu.edu.cn
引用本文:   
惠乐, 王浩, 刘嘉敏, 唐不甜, 张伟娟. 基于生态系统服务的关中平原生态安全格局构建[J]. 自然资源遥感, 2025, 37(2): 194-203.
HUI Le, WANG Hao, LIU Jiamin, TANG Butian, ZHANG Weijuan. Construction of an ecological security pattern in the Guanzhong Plain based on ecosystem services. Remote Sensing for Natural Resources, 2025, 37(2): 194-203.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023376      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/194
Fig.1  研究区地理位置
数据名称 数据来源 数据描述 数据用途
土地利用 http://www.gscloud.cn/ 人工解译2020年Landsat8影像 计算综合阻力面中区位动力指标
气象数据 http://www.geodata.cn/ 基于地形因子采用全国气象站点数据插值并计算平均值获得 计算水源涵养、生物栖息地提供和水土流失敏感性指标
土壤数据 https://www.resdc.cn/ 基于第二次土壤普查数据获得 计算水源涵养、土壤保持和水土流失敏感性指标
高程数据 http://www.gscloud.cn/ 基于此产品计算坡度 计算水源涵养、生物栖息地提供和本底条件指标
植被覆盖 https://www.resdc.cn/ 基于归一化植被指数数据产品获得 计算水土流失敏感性指数和本底条件指标
净初级生产力 http://www.geodata.cn/ Carnegie-Ames-Stanford Approach(CASA)模型计算获得 计算水源涵养、土壤保持和生物栖息地提供指标
基础地理数据 http://ngcc.sbsm.gov.cn/ 行政区划、道路交通、河流水系等数据 计算综合阻力面中区位动力指标
Tab.1  研究所用数据源
Fig.2  技术路线图
扩张类型 生态用地扩张
阻力因子
赋值 方向赋值 权重
1 3 5 7 9
本底条件 高程/m [0,200) [200,350) [350,500) [500,650) [650,3 800) 0.2
坡度/(°) [0,8) [8,15) [15,25) [25,35) [35,90) 0.2
植被覆盖度 (0.5,1] (0.4,0.5] (0.3,0.4] (0.2,0.3] [0,0.2] 0.2
土地利用类型 林地 水域 草地 耕地 建设及未利用地 0.4
区位动力 距主要道路距离/km [0,1) [1,1.5) [1.5,2) [2,3) ≥3 0.45
距居民点距离/km [0,1.5) [1.5,3) [3,5) [5,7) ≥7 0.55
生态阻力 土壤保持重要性 一般重要 轻度重要 中度重要 高度重要 极重要 0.4
水源敏感性 一般重要 轻度重要 中度重要 高度重要 极重要 0.35
生物多样性 一般重要 轻度重要 中度重要 高度重要 极重要 0.25
Tab.2  研究区综合阻力面评价指标
Fig.3  生态系统服务重要性评价和生态源地识别结果
生态系统服务
重要性评价
水源涵养 土壤保持 生物栖息地提供
一般重要 14 391.17 1 698.07 2 807.03
轻度重要 20 946.63 9 708.81 18 475.48
中度重要 10 694.14 21 241.56 15 780.17
高度重要 6 335.01 17 444.72 11 678.72
极重要 2 564.98 4 738.22 6 205.42
Tab.3  生态系统服务重要性评价结果
Fig.4  生态敏感性评价和阻力面计算结果
城市 平均水土流
失敏感性值
平均归一化
植被指数值
平均夜间
灯光值
平均基本
阻力值
平均修正
阻力值
宝鸡 0.09 0.82 0.001 0.52 0.003
咸阳 0.23 0.70 0.007 0.61 0.005
铜川 0.12 0.79 0.002 0.63 0.004
渭南 0.22 0.68 0.003 0.68 0.005
西安 0.13 0.75 0.019 0.55 0.005
Tab.4  关中平原各城市水土流失敏感性指数、归一化植被指数和夜间灯光平均值
Fig.5  关中平原阻力面修正前后生态廊道图
Fig.6  关中平原生态安全格局图
城市 生态廊道长度 生态廊道
长度变化
基本阻力面 修正阻力面
宝鸡 6 041.02 5 445.91 -595.11
咸阳 2 750.40 1 509.09 -1 241.31
铜川 266.73 377.98 111.25
渭南 1 876.60 1 460.57 -416.03
西安 3 678.54 4 206.35 527.81
Tab.5  关中平原阻力面修正前后生态廊道长度的变化
[1] Wang D C, Chen J H, Zhang L H, et al. Establishing an ecological security pattern for urban agglomeration,taking ecosystem services and human interference factors into consideration[J]. PeerJ, 2019, 7:e7306.
[2] Qian W Q, Zhao Y, Li X Y. Construction of ecological security pattern in coastal urban areas:A case study in Qingdao,China[J]. Ecological Indicators, 2023, 154:110754.
[3] Duan J Q, Cao Y E, Liu B, et al. Construction of an ecological security pattern in Yangtze River Delta based on circuit theory[J]. Sustainability, 2023, 15(16):12374.
[4] 陈利顶, 景永才, 孙然好. 城市生态安全格局构建:目标、原则和基本框架[J]. 生态学报, 2018, 38(12):4101-4108.
Chen L D, Jing Y C, Sun R H. Urban eco-security pattern construction:Targets,principles and basic framework[J]. Acta Ecolo-gica Sinica, 2018, 38(12):4101-4108.
[5] 马扩, 郝丽娜, 童新, 等. 科尔沁沙丘-草甸相间地区生态安全格局的时空演变[J]. 应用生态学报, 2023, 34(8):2215-2225.
doi: 10.13287/j.1001-9332.202308.021
Ma K, Hao L N, Tong X, et al. Spatiotemporal variations of ecosystem security pattern in Horqin sandy dune meadow alternating area,China[J]. Chinese Journal of Applied Ecology, 2023, 34(8):2215-2225.
[6] Chen J, Wang S S, Zou Y T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services:A case study of the Guanzhong Plain urban agglomeration,China[J]. Ecological Indicators, 2022, 136:108688.
[7] 韩王亚, 夏双双, 周维, 等. 基于生态廊道识别的拉萨河流域生态安全格局构建[J]. 生态学报, 2023, 43(21):8948-8957.
Han W Y, Xia S S, Zhou W, et al. Constructing ecological security pattern based on ecological corridor identification in Lhasa River Basin[J]. Acta Ecologica Sinica, 2023, 43(21):8948-8957.
[8] 应凌霄, 孔令桥, 肖燚, 等. 生态安全及其评价方法研究进展[J]. 生态学报, 2022, 42(5):1679-1692.
Ying L X, Kong L Q, Xiao Y, et al. The research progress and prospect of ecological security and its assessing approaches[J]. Acta Ecologica Sinica, 2022, 42(5):1679-1692.
[9] 王悦露, 董威, 张云龙, 等. 基于生态系统服务的生态安全研究进展[J]. 生态学报, 2023, 43(19):7821-7829.
Wang Y L, Dong W, Zhang Y L, et al. Research progress and prospect of ecological security based on ecosystem services[J]. Acta Ecologica Sinica, 2023, 43(19):7821-7829.
[10] 马超, 陈英, 张金龙, 等. 河西走廊生态安全格局构建与优化研究[J]. 生态科学, 2023, 42(1):206-214.
Ma C, Chen Y, Zhang J L, et al. Construction and optimization of ecological security pattern in Hexi Corridor[J]. Ecological Science, 2023, 42(1):206-214.
[11] Sutton-Grier A E, Wowk K, Bamford H. Future of our coasts:The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities,economies and ecosystems[J]. Environmental Science and Policy, 2015, 51:137-148.
[12] Seto K C, Güneralp B, Hutyra L R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16083-16088.
doi: 10.1073/pnas.1211658109 pmid: 22988086
[13] 俞孔坚, 李海龙, 李迪华, 等. 国土尺度生态安全格局[J]. 生态学报, 2009, 29(10):5163-5175.
Yu K J, Li H L, Li D H, et al. National scale ecological security pattern[J]. Acta Ecologica Sinica, 2009, 29(10):5163-5175.
[14] 彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4):701-710.
doi: 10.11821/dlxb201804009
Peng J, Li H L, Liu Y X, et al. Identification and optimization of ecological security pattern in Xiong’an New Area[J]. Acta Geographica Sinica, 2018, 73(4):701-710.
[15] 叶鑫, 邹长新, 刘国华, 等. 生态安全格局研究的主要内容与进展[J]. 生态学报, 2018, 38(10):3382-3392.
Ye X, Zou C X, Liu G H, et al. Main research contents and advances in the ecological security pattern[J]. Acta Ecologica Sinica, 2018, 38(10):3382-3392.
[16] 蒙吉军, 朱利凯, 杨倩, 等. 鄂尔多斯市土地利用生态安全格局构建[J]. 生态学报, 2012, 32(21):6755-6766.
Meng J J, Zhu L K, Yang Q, et al. Building ecological security pattern based on land use:A case study of Ordos,Northern China[J]. Acta Ecologica Sinica, 2012, 32(21):6755-6766.
[17] 胡海德, 李小玉, 杜宇飞. 大连城市生态安全格局的构建[J]. 东北师大学报(自然科学版), 2013, 45(1):138-143.
Hu H D, Li X Y, Du Y F. Construction of urban ecological security pattern for Dalian[J]. Journal of Northeast Normal University (Natural Science Edition), 2013, 45(1):138-143.
[18] 杨天荣, 匡文慧, 刘卫东, 等. 基于生态安全格局的关中城市群生态空间结构优化布局[J]. 地理研究, 2017, 36(3):441-452.
doi: 10.11821/dlyj201703004
Yang T R, Kuang W H, Liu W D, et al. Optimizing the layout of eco-spatial structure in Guanzhong urban agglomeration based on the ecological security pattern[J]. Geographical Research, 2017, 36(3):441-452.
[19] 江源通, 田野, 郑拴宁. 海岛型城市生态安全格局研究——以平潭岛为例[J]. 生态学报, 2018, 38(3):769-777.
Jiang Y T, Tian Y, Zheng S N. A study on urban ecosecurity pattern of island city:A case study of Pingtan Island[J]. Acta Ecologica Sinica, 2018, 38(3):769-777.
[20] Peng J, Zhao H J, Liu Y X. Urban ecological corridors construction:A review[J]. Acta Ecologica Sinica, 2017, 37(1):23-30.
[21] 任志远, 黄青, 李晶. 陕西省生态安全及空间差异定量分析[J]. 地理学报, 2005, 60(4):597-606.
Ren Z Y, Huang Q, Li J. Quantitative analysis of dynamic change and spatial difference of the ecological safety:The case of Shaanxi Province[J]. Acta Geographica Sinica, 2005, 60(4):597-606.
[22] 潘卫涛, 岳邦瑞, 姚龙杰, 等. 耦合风险与服务的市域生态安全格局构建——以陕西省咸阳市为例[J]. 应用生态学报, 2023, 34(1):178-186.
doi: 10.13287/j.1001-9332.202301.022
Pan W T, Yue B R, Yao L J, et al. Urban ecological security pattern construction coupled with risk and service:A case study of Xianyang City,Shaanxi Province,China[J]. Chinese Journal of Applied Ecology, 2023, 34(1):178-186.
[23] 张玉娟, 宋阳, 赵梓涵, 等. 基于 “源-汇” 理论和MCR的哈尔滨市生态安全格局变化[J]. 测绘与空间地理信息, 2022, 45(3):1-4.
Zhang Y J, Song Y, Zhao Z H, et al. Ecological security pattern changes in Harbin based on source-sink landscape theory and MCR[J]. Geomatics and Spatial Information Technology, 2022, 45(3):1-4.
[24] 金山. 基于GIS的泉州市生态安全格局构建及空间发展预景[D]. 天津: 天津大学, 2017.
Jin S. The research of ecological security patterns and space development prospect in Quanzhou on GIS[D]. Tianjin: Tianjin University, 2017.
[25] 孙泽兴, 李汶怡, 刘嘉敏, 等. 陕西省生态恢复综合效益评估[J]. 生态学报, 2022, 42(7):2718-2729.
Sun Z X, Li W Y, Liu J M, et al. Evaluation of comprehensive be-nefit for ecological restoration in Shaanxi Province[J]. Acta Ecologica Sinica, 2022, 42(7):2718-2729.
[26] 张海铃, 叶长盛, 胡梦姗. 基于生态安全格局的环鄱阳湖城市群生态修复关键区域识别及修复策略[J]. 水土保持研究, 2023, 30(2):393-402.
Zhang H L, Ye C S, Hu M S. Identification and restoration strategy of key areas of ecological restoration in urban agglomeration around Poyang Lake based on ecological security pattern[J]. Research of Soil and Water Conservation, 2023, 30(2):393-402.
[27] 彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建——以云南省玉溪市为例[J]. 应用生态学报, 2017, 28(2):627-635.
doi: 10.13287/j.1001-9332.201702.013
Peng J, Guo X N, Hu Y N, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity:A case study in Yuxi City,Yunnan Province,China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):627-635.
[28] Yang Y, Cai Z X. Ecological security assessment of the Guanzhong Plain urban agglomeration based on an adapted ecological footprint model[J]. Journal of Cleaner Production, 2020, 260:120973.
[29] 杨姗姗, 邹长新, 沈渭寿, 等. 基于生态红线划分的生态安全格局构建——以江西省为例[J]. 生态学杂志, 2016, 35(1):250-258.
Yang S S, Zou C X, Shen W S, et al. Construction of ecological security patterns based on ecological red line:A case study of Jiangxi Province[J]. Chinese Journal of Ecology, 2016, 35(1):250-258.
[30] 谭华清, 张金亭, 周希胜. 基于最小累计阻力模型的南京市生态安全格局构建[J]. 水土保持通报, 2020, 40(3):282-288,296,325.
Tan H Q, Zhang J T, Zhou X S. Construction of ecological security patterns based on minimum cumulative resistance model in Nanjing City[J]. Bulletin of Soil and Water Conservation, 2020, 40(3):282-288,296,325.
[31] 侯松岩. 基于GIS技术的广东省清远市城市生态安全格局构建研究[J]. 智能城市, 2022, 8(10):77-80.
Hou S Y. Research on the construction of urban ecological security pattern in Qingyuan City,Guangdong Province based on GIS technology[J]. Intelligent City, 2022, 8(10):77-80.
[32] Kass M J. Summary for policymakers of the global assessment report on biodiversity and ecosystem services[J]. Natural Resources and Environment, 2020, 34(3):62.
[33] 韩世豪, 梅艳国, 叶持跃, 等. 基于最小累积阻力模型的福建省南平市延平区生态安全格局构建[J]. 水土保持通报, 2019, 39(2):192-198,205.
Han S H, Mei Y G, Ye C Y, et al. Construction of ecological security pattern in Yanping District of Nanping City,Fujian Province based on minimum cumulative resistance model[J]. Bulletin of Soil and Water Conservation, 2019, 39(2):192-198,205.
[34] 彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3):407-419.
doi: 10.11821/dlyj201703001
Peng J, Zhao H J, Liu Y X, et al. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3):407-419.
[35] Dai L, Liu Y B, Luo X Y. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake,China[J]. Science of the Total Environment, 2021, 754:141868.
[36] Dong J Q, Peng J, Xu Z H, et al. Integrating regional and interregional approaches to identify ecological security patterns[J]. Landscape Ecology, 2021, 36(7):2151-2164.
[37] Li Z T, Li M, Xia B C. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation[J]. Ecological Indicators, 2020, 114:106319.
[38] Li J Z, Ouyang X, Zhu X. Land space simulation of urban agglo-merations from the perspective of the symbiosis of urban development and ecological protection:A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Ecological Indicators, 2021, 126:107669.
[39] 吴健生, 张理卿, 彭建, 等. 深圳市景观生态安全格局源地综合识别[J]. 生态学报, 2013, 33(13):4125-4133.
Wu J S, Zhang L Q, Peng J, et al. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen[J]. Acta Ecologica Sinica, 2013, 33(13):4125-4133.
[40] Ma L B, Bo J, Li X Y, et al. Identifying key landscape pattern indices influencing the ecological security of inland river basin:The middle and lower reaches of Shule River Basin as an example[J]. Science of the Total Environment, 2019, 674:424-438.
[41] 王正伟, 王宏卫, 杨胜天, 等. 基于生态系统服务功能的新疆绿洲生态安全格局识别及优化策略——以拜城县为例[J]. 生态学报, 2022, 42(1):91-104.
Wang Z W, Wang H W, Yang S T, et al. Identification and optimization strategy of ecological security pattern of Oasis in Xinjiang based on ecosystem service function:Taking Baicheng County as an example[J]. Acta Ecologica Sinica, 2022, 42(1):91-104.
[42] 胡俊峰, 陈昱星, 徐晓慧, 等. 基于生态安全格局的海岛型城市生态保护修复关键区域识别——以福州市海坛岛为例[J]. 山东林业科技, 2022, 52(6):1-11.
Hu J F, Chen Y X, Xu X H, et al. Ecological protection and restoration of island-type cities based on ecological security pattern identification of key areas:Taking Haitan Island in Fuzhou as an example[J]. Journal of Shandong Forestry Science and Technology, 2022, 52(6):1-11.
[43] 毛诚瑞, 代力民, 齐麟, 等. 基于生态系统服务的流域生态安全格局构建——以辽宁省辽河流域为例[J]. 生态学报, 2020, 40(18):6486-6494.
Mao C R, Dai L M, Qi L, et al. Constructing ecological security pattern based on ecosystem services:A case study in Liaohe River Basin,Liaoning Province,China[J]. Acta Ecologica Sinica, 2020, 40(18):6486-6494.
[44] 赵宇豪, 罗宇航, 易腾云, 等. 基于生态系统服务供需匹配的深圳市生态安全格局构建[J]. 应用生态学报, 2022, 33(9):2475-2484.
doi: 10.13287/j.1001-9332.202209.026
Zhao Y H, Luo Y H, Yi T Y, et al. Constructing an ecological security pattern in Shenzhen,China,by matching the supply and demand of ecosystem services[J]. Chinese Journal of Applied Ecology, 2022, 33(9):2475-2484.
[45] 汉瑞英, 赵志平, 肖能文, 等. 基于最小累积阻力差值模型的北京市生态安全格局构建[J]. 水土保持通报, 2022, 42(3):95-102.
Han R Y, Zhao Z P, Xiao N W, et al. Construction of ecological security pattern in Beijing City based on minimum resistance model[J]. Bulletin of Soil and Water Conservation, 2022, 42(3):95-102.
[46] 李欣鹏, 李锦生, 侯伟. 区域生态网络精细化空间模拟及廊道优化研究——以汾河流域为例[J]. 地理与地理信息科学, 2020, 36(5):14-20,55.
Li X P, Li J S, Hou W. Research on refined simulation of regional ecological network and corridor optimization:A case study of Fenhe River Basin[J]. Geography and Geo-Information Science, 2020, 36(5):14-20,55.
[47] 熊善高, 秦昌波, 于雷, 等. 基于生态系统服务功能和生态敏感性的生态空间划定研究——以南宁市为例[J]. 生态学报, 2018, 38(22):7899-7911.
Xiong S G, Qin C B, Yu L, et al. Methods to identify the boundary of ecological space based on ecosystem service functions and ecological sensitivity:A case study of Nanning City[J]. Acta Ecologica Sinica, 2018, 38(22):7899-7911.
[48] 徐彩芳, 曹月娥, 许仲林, 等. 新疆维吾尔自治区阿克苏地区生态源地的识别方法研究[J]. 水土保持通报, 2021, 41(4):174-181,188.
Xu C F, Cao Y E, Xu Z L, et al. A study on identification methods of ecological source area in Aksu Area,Xinjiang Ulgur Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2021, 41(4):174-181,188.
[49] 陈瑶瑶, 罗志军, 齐松, 等. 基于生态敏感性与生态网络的南昌市生态安全格局构建[J]. 水土保持研究, 2021, 28(4):342-349.
Chen Y Y, Luo Z J, Qi S, et al. Ecological security pattern construction of Nanchang City based on ecological sensitivity and ecological network[J]. Research of Soil and Water Conservation, 2021, 28(4):342-349.
[1] 刘永林, 高益忠, 陈明辉, 邱玲. 广东省东莞市国土空间生态安全格局构建与分析[J]. 自然资源遥感, 2024, 36(2): 126-134.
[2] 黄卓, 孙建国, 冯春月, 徐鹏, 杨浩, 侯文兵. 基于生态系统服务变化的河西地区生态修复分区[J]. 自然资源遥感, 2023, 35(4): 236-243.
[3] 李博, 林文鹏, 李鲁冰. 面向SDG15的钱江源国家公园生态系统服务时空分析[J]. 自然资源遥感, 2022, 34(4): 243-253.
[4] 李静芝, 王苗, 冯文静, 李彬. 湘西州地区生态系统服务价值时空特征及驱动分析[J]. 自然资源遥感, 2022, 34(3): 207-217.
[5] 李霞, 李静芝. 荆南三口地区生态系统服务价值对城乡建设用地扩张的响应机理[J]. 自然资源遥感, 2022, 34(2): 278-288.
[6] 叶勤玉, 杨世琦, 张强, 王舒, 何泽能, 郑颖慧. 三峡库区(重庆段)水源涵养功能遥感监测及时空分布特征分析[J]. 自然资源遥感, 2022, 34(2): 184-193.
[7] 汪清川, 奚砚涛, 刘欣然, 周文, 徐欣冉. 生态服务价值对土地利用变化的时空响应研究——以徐州市为例[J]. 自然资源遥感, 2021, 33(3): 219-228.
[8] 张瑜, 赵晓丽, 左丽君, 张增祥, 徐进勇. 黄土高原土地利用变化对生态系统服务价值的影响[J]. 国土资源遥感, 2019, 31(3): 132-139.
[9] 周日平. 黄土高原典型区土壤保持服务效应研究[J]. 国土资源遥感, 2019, 31(2): 131-139.
[10] 许旭, 任斐鹏, 韩念龙. 2000—2009年河北省生态系统服务价值时空动态遥感监测[J]. 国土资源遥感, 2015, 27(1): 187-193.
[11] 尹锴, 赵千钧, 文美平, 花利忠, 吝涛, 石龙宇. 海岛型城市森林景观格局效应及其生态系统服务评估[J]. 国土资源遥感, 2014, 26(2): 128-133.
[12] 许旭, 郜昂, 朱萍萍, 周增科. 基于多源遥感数据的生态系统服务价值评估——以河北省为例[J]. 国土资源遥感, 2013, 25(4): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发