Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 236-243    DOI: 10.6046/zrzyyg.2022279
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于生态系统服务变化的河西地区生态修复分区
黄卓1,2,3(), 孙建国1,2,3(), 冯春月1,2,3, 徐鹏4, 杨浩1,2,3, 侯文兵1,2,3
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
4.西南石油大学地球科学与技术学院,成都 610500
ES change-based ecological restoration zoning for the Hexi region
HUANG Zhuo1,2,3(), SUN Jianguo1,2,3(), FENG Chunyue1,2,3, XU Peng4, YANG Hao1,2,3, HOU Wenbing1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
4. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(2758 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

生态修复分区是有效开展生态修复的必要前提,基于生态系统服务(ecosystem services,ES)的分区是当前生态修复分区的热点方法。已有研究大多仅考虑ES现状而忽略其变化,无法反映生态修复的潜力和方向。该文提出一种基于ES变化的生态修复二级分区方法,并将其应用于甘肃省河西地区。首先,基于(Google Earth Engine,GEE)平台分类Landsat影像获得2期(2005年和2020年)土地利用数据,采用当量因子法计算2期ES分项价值和总价值; 然后,对ES总价值变化进行聚类和异常值分析,构建生态修复一级分区(优先修复区PrR、重要修复区ImR、潜在修复区PoR、重要保护区ImP和优先保护区PrP); 最后,利用ES分项价值变化的组合特征构建二级分区。结果表明: ①一级分区各类占比分别为PrR 0.9%,ImR 7.2%,PoR 78.0%,ImP 13.0%和PrP 0.9%,PoR大部分位于河西地区的戈壁荒漠,PrR与PrP零散分布在祁连山与山前草地的过渡带,ImR与ImP聚集在祁连山山地、走廊平原以及北山山地,ImR与ImP的修复与保护潜力更大,且生态修复潜力有限,保护较修复更为迫切; ②二级分区共有10类修复二级区和6类保护二级区,ImR和ImP的二级分区均以分项服务协同变化为主,河西地区生态修复与保护均应关注ES的综合提升。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄卓
孙建国
冯春月
徐鹏
杨浩
侯文兵
关键词 生态系统服务变化聚类与异常值分析生态修复分区河西地区    
Abstract

Ecological restoration zoning is a prerequisite for effective ecological restoration, and currently, the most commonly used zoning method is based on ecosystem services (ES). Most of the previous studies merely focus on the current ES status but ignore its changes, thus failing to reflect the potential and direction of ecological restoration. This study proposed a two-level zoning method for ecological restoration based on ES changes and applied this method to the Hexi region, Gansu Province. First, through Landsat image classification based on the Google Earth Engine (GEE) platform, this study obtained two periods (2005 and 2020) of land use data and calculated the ES sub-value and total value of the two periods of data using the equivalent factor method. Then, this study constructed the level-1 ecological restoration areas (priority restoration area PrR, important restoration area ImR, potential restoration area PoR, important protection area ImP, and priority protection area PrP) through the clustering and outlier analyses of the total ES value changes. Finally, the level-2 ecological restoration zones were determined based on the combined characteristics of changes in the values ES subitems. The results show that: ① Various level-1 areas, i.e., the PrR, ImR, PoR, ImP, and PrP areas account for 0.9%, 7.2%, 78.0%, 13.0%, and 0.9%, respectively. Most of the PoR areas are distributed in the Gobi desert of Hexi region, the PrR and PrP areas are sporadically distributed in the transition zone from the Qilian Mountains to the piedmont grassland, the ImR and ImP zones are mostly distributed in the Qilian Mountains, corridor plains, and mountains in the north. There exit greater potential for the restoration of the ImR areas and the protection of the ImP areas but limited potential for ecological restoration. Furthermore, there is a more urgent need for protection than for restoration; ② The level-2 areas can be classified into 10 categories of restoration areas and six categories of protection areas. The level-2 areas of the ImR and ImP areas are primarily determined based on the synergistic changes in sub-services. Both ecological restoration and protection measures for the Hexi region should focus on the comprehensive enhancement of ES.

Key wordsES    change    clustering and outlier analysis    ecological restoration zoning    Hexi region
收稿日期: 2022-07-05      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:甘肃省科技计划项目“甘肃省地表覆盖变化自动监测关键技术”(20YF3GA013);兰州交通大学优秀平台(201806)
通讯作者: 孙建国(1974-),男,博士(博士后),教授,主要研究方向为环境遥感与GIS应用。Email: sunjguo@mail.lzjtu.cn
作者简介: 黄卓(1997-),女,硕士研究生,主要研究方向为土地利用分类和生态遥感应用。Email: 1004094799@qq.com
引用本文:   
黄卓, 孙建国, 冯春月, 徐鹏, 杨浩, 侯文兵. 基于生态系统服务变化的河西地区生态修复分区[J]. 自然资源遥感, 2023, 35(4): 236-243.
HUANG Zhuo, SUN Jianguo, FENG Chunyue, XU Peng, YANG Hao, HOU Wenbing. ES change-based ecological restoration zoning for the Hexi region. Remote Sensing for Natural Resources, 2023, 35(4): 236-243.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022279      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/236
Fig.1  研究区概况图
一级分区 全称 聚类类别
PrR 优先修复区 LH
ImR 重要修复区 LL
ImP 重要保护区 HH
PrP 优先保护区 HL
PoR 潜在修复区 不显著区
Tab.1  生态修复一级分区情况
Fig.2  2005年和2020年土地利用分类图
Fig.3  ES总价值和分项价值变化的空间分布
Fig.4  生态修复一级分区
Fig.5  生态修复二级分区面积占比图
[1] 欧阳志云. 我国生态系统面临的问题与对策[J]. 中国国情国力, 2017(3):6-10.
Ouyang Z Y. Problems and countermeasures faced by ecosystems in China[J]. China National Conditions and Strength, 2017(3):6-10.
[2] 曹宇, 王嘉怡, 李国煜. 国土空间生态修复:概念思辨与理论认知[J]. 中国土地科学, 2019, 33(7):1-10.
Cao Y, Wang J Y, Li G Y. Ecological restoration for territorial space:Basic concepts and foundations[J]. China Land Science, 2019, 33(7):1-10.
[3] 管英杰, 刘俊国, 崔文惠, 等. 中国生态修复研究进展态势分析[J]. 生态学报, 2022, 42(12):1-11.
Guan Y J, Liu J G, Cui W H, et al. Progress and future direction of ecological restoration research in China[J]. Acta Ecologica Sinica, 2022, 42(12):1-11.
[4] 李淑娟, 郑鑫, 隋玉正. 国内外生态修复效果评价研究进展[J]. 生态学报, 2021, 41(10):4240-4249.
Li S J, Zheng X, Sui Y Z. Research progress in the evaluation of ecological restoration effects at home and abroad[J]. Acta Ecologica Sinica, 2021, 41(10):4240-4249.
[5] 刘俊国, 崔文惠, 田展, 等. 渐进式生态修复理论[J]. 科学通报, 2021, 66(9):1014-1025.
Liu J G, Cui W H, Tian Z, et al. Theory of stepwise ecological restoration[J]. Chinese Science Bulletin, 2021, 66(9):1014-1025.
[6] 陈新闯, 李小倩, 吕一河, 等. 区域尺度生态修复空间辨识研究进展[J]. 生态学报, 2019, 39(23):8717-8724.
Chen X C, Li X Q, Lyu Y H, et al. Review of spatial identification of ecological restoration[J]. Acta Ecologica Sinica, 2019, 39(23):8717-8724.
[7] 陈新闯, 李小倩, 吕一河, 等. 生态空间区划体系的理论内涵及关键技术研究[J]. 生态学报, 2022, 42(3):843-850.
Chen X C, Li X Q, Lyu Y H, et al. Theoretical and technical discussion on the system of ecological space zoning[J]. Acta Ecologica Sinica, 2022, 42(3):843-850.
[8] 宋伟, 韩赜, 刘琳. 山水林田湖草生态问题系统诊断与保护修复综合分区研究——以陕西省为例[J]. 生态学报, 2019, 39(23):8975-8989.
Song W, Han Z, Liu L. Systematic diagnosis of ecological problems and comprehensive zoning of ecological conservation and restoration for an integrated ecosystem of mountains-rivers-forests-farmlands-lakes-grasslands in Shaanxi Province[J]. Acta Ecologica Sinica, 2019, 39(23):8975-8989.
[9] 马世发, 劳春华, 江海燕. 基于生态安全格局理论的国土空间生态修复分区模拟——以粤港澳大湾区为例[J]. 生态学报, 2021, 41(9):3441-3448.
Ma S F, Lao C H, Jiang H Y. Ecological restoration zoning of territorial space based on the pattern simulation of eco-security scenario:A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Ecologica Sinica, 2021, 41(9):3441-3448.
[10] 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5):635-640.
Ouyang Z Y, Wang R S, Zhao J Z. Ecosystem services and their economic valuation[j],Chinese Journal of Applied Ecology, 1999, 10(5):635-640.
[11] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究[J]. 生态学报, 1999, 19(5):607-613.
Ouyang Z Y, Wang X K, Miao H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values[J], Acta Ecologica Sinica, 1999, 19(5):607-613.
[12] 岳文泽, 侯丽, 夏皓轩, 等. 基于生态系统服务供需平衡的宁夏固原生态修复分区与优化策略[J]. 应用生态学报, 2022, 33(1):149-158.
doi: 10.13287/j.1001-9332.202112.024
Yue W Z, Hou L, Xia H X, et al. Territorially ecological restoration zoning and optimization strategy in Guyuan City of Ningxia,China:Based on the balance of ecosystem service supply and demand[J]. Chinese Journal of Applied Ecology, 2022, 33(1):149-158.
[13] 刘春芳, 李鹏杰, 刘立程, 等. 西北生态脆弱区省域国土空间生态修复分区[J]. 农业工程学报, 2020, 36(17):254-263.
Liu C F, Li P J, Liu L C, et al. Ecological restoration zoning of provincial territorial space in the ecologically fragile areas of Northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):254-263.
[14] Comín F A, Miranda B, Sorando R, et al. Prioritizing sites for ecological restoration based on ecosystem services[J]. Journal of Applied Ecology, 2018, 55(3):1155-1163.
doi: 10.1111/jpe.2018.55.issue-3
[15] 倪庆琳, 侯湖平, 丁忠义, 等. 基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例[J]. 自然资源学报, 2020, 35(1):204-216.
doi: 10.31497/zrzyxb.20200117
Ni Q L, Hou H P, Ding Z Y, et al. Ecological remediation zoning of territory based on the ecological security pattern recognition:Taking Jiawang district of Xuzhou City as an example[J]. Journal of Natural Resources, 2020, 35(1):204-216.
doi: 10.31497/zrzyxb.20200117
[16] 丹宇卓, 彭建, 张子墨, 等. 基于“退化压力-供给状态-修复潜力”框架的国土空间生态修复分区——以珠江三角洲为例[J]. 生态学报, 2020, 40(23):8451-8460.
Dan Y Z, Peng J, Zhang Z M, et al. Territorially ecological restoration zoning based on the framework of degradation pressure,supply state and restoration potential:A case study in the Pearl River Delta region[J] Acta Ecologica Sinica, 2020, 40(23):8451-8460.
[17] 付梦娣, 唐文家, 刘伟玮, 等. 基于生态系统服务视角的生态风险评估及生态修复空间辨识——以长江源区为例[J]. 生态学报, 2021, 41(10):3846-3855.
Fu M D, Tang W J, Liu W W, et al. Ecological risk assessment and spatial identification of ecological restoration from the ecosystem service perspective:A case study in source region of Yangtze River[J]. Acta Ecologica Sinica, 2021, 41(10):3846-3855.
[18] 张建永, 李扬, 赵文智, 等. 河西走廊生态格局演变跟踪分析[J]. 水资源保护, 2015, 31(3):5-10.
Zhang J Y, Li Y, Zhao W Z, et al. Tracking analysis on changes of ecological patterns in Hexi Corridor Region[J]. Water Resources Protection, 2015, 31(3):5-10.
[19] 谢丽丽. 河西走廊生态保护修复现状及优化路径[J]. 发展, 2021(7):68-69.
Xie L L. Status quo and optimization path of ecological protection and restoration of Hexi Corridor[J]. Developing, 2021(7):68-69.
[20] Ge Y, Hu S, Ren Z, et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018[J]. Remote Sensing of Environment, 2019, 232:111285.
doi: 10.1016/j.rse.2019.111285
[21] Wohlfart C, Mack B, Liu G, et al. Multi-faceted land cover and land use change analyses in the Yellow River Basin based on dense Landsat time series:Exemplary analysis in mining,agriculture,forest,and urban areas[J]. Applied Geography, 2017, 85:73-88.
doi: 10.1016/j.apgeog.2017.06.004
[22] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8):1243-1254.
Xie G D, Zhang C X, Zhang L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8):1243-1254.
doi: 10.11849/zrzyxb.2015.08.001
[23] Robert C, Ralph D, Rudolf D G, et al. The value of the world’s ecosystem services and natural capital[J]. Nature:International Weekly Journal of Science, 1997, 387(6630).
[24] 欧阳晓, 朱翔, 贺清云. 基于生态系统服务和生态系统健康的生态风险评价——以长株潭城市群为例[J]. 生态学报, 2020, 40(16):5478-5489.
Ouyang X, Zhu X, He Q Y. Incorporating ecosystem services with ecosystem health for ecological risk assessment:A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration,China[J]. Acta Ecologica Sinica, 2020, 40(16):5478-5489.
[25] Xie G, Zhang C, Zhen L, et al. Dynamic changes in the value of China’s ecosystem services[J]. Ecosystem Services, 2017(26):146-154.
[26] 舒波, 李雨哲, 王玲, 等. 乐山市土地利用与生态系统服务价值时空动态变化分析[J]. 生态科学, 2022, 41(1):159-168.
Shu B, Li Y Z, Wang L, et al. Spatial and temporal dynamic changes of land use and ecosystem service value in Leshan City[J]. Ecological Science, 2022, 41(1):159-168.
[27] 许长军, 金孙梅, 王英. 基于GIS的青藏高原人居环境自然适宜性评价[J]. 生态科学, 2020, 39(6):93-103.
Xu C J, Jin S M, Wang Y. Natural suitability evaluation of human settlements in Qinghai-Tibet Plateau based on GIS[J]. Ecological Science, 2020, 39(6):93-103.
[28] 李传华, 范也平, 曹红娟, 等. 基于CASA模型的植被第一性生产力人为影响定量研究——以石羊河流域为例[J]. 干旱区地理, 2018, 41(1):142-151.
Li C H, Fan Y P, Cao H J, et al. Impact of human activities on net primary productivity based on the CASA model:A case study of the Shiyang River Basin[J]. Arid Land Geography, 2018, 41(1):142-151.
[29] 杨雪荻, 白永平, 车磊, 等. 甘肃省生态安全时空演变特征及影响因素解析[J]. 生态学报, 2020, 40(14):4785-4793.
Yang X D, Bai Y P, Che L, et al. Spatio-temporal evolution and influencing factors of ecological security pattern in Gansu Province[J]. Acta Ecologica Sinica, 2020, 40(14):4785-4793.
[30] 候启, 张勃, 何航, 等. 近50多年河西地区干热风事件时空变化特征[J]. 干旱区研究, 2019, 36(2):403-411.
Hou Q, Zhang B, He H, et al. Spatiotemporal variation of dry-hot wind events in the Hexi region in recent 50 years[J]. Arid Zone Research, 2019, 36(2):403-411.
[31] 许春娟, 贾生海, 白有帅, 等. 河西走廊荒漠区及水源涵养区水保和人工植被建设刍议[J]. 水利规划与设计, 2022(4):89-92.
Xu C J, Jia S H, Bai Y S, et al. Discussion on the construction of water conservation and artificial vegetation in the desert area and water conservation area of the Hexi Corridor[J]. Water Resources Planning and Design, 2022(4):89-92.
[1] 王子浩, 李轶鲲, 李小军, 杨树文. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4): 96-104.
[2] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4): 214-225.
[3] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[4] 陈佩佩, 张利华, 崔越, 陈俊宏. 基于BEPS-Terrainlab V2.0模型的鄂西犟河流域NPP模拟及环境响应分析[J]. 自然资源遥感, 2023, 35(4): 273-281.
[5] 田柳兰, 吕思雨, 毋兆鹏, 王娟娟, 史欣鹏. 乌鲁木齐市土地利用变化及其空间冲突测度[J]. 自然资源遥感, 2023, 35(4): 282-291.
[6] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[7] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[8] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[9] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[10] 庞鑫, 刘珺. 气候变化对亚洲地区植被NDVI变化的影响[J]. 自然资源遥感, 2023, 35(2): 295-305.
[11] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[12] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[13] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[14] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[15] 刘春霖, 夏建新. 基于LSTM-CA模型的土地利用动态模拟[J]. 自然资源遥感, 2022, 34(4): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发