Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 138-147    DOI: 10.6046/zrzyyg.2024365
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合大核选择性卷积增强模块的遥感图像匹配网络
邓煜曦(), 李佳田(), 刘佳音, 罗欣, 杨涛
昆明理工大学国土资源工程学院,昆明 650093
A remote sensing image matching network combining a large selective kernel-enhanced convolution module
DENG Yuxi(), LI Jiatian(), LIU Jiayin, LUO Xin, YANG Tao
Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(8371 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对遥感图像中不同地物特征信息提取所需上下文背景信息不同的问题,提出一种结合大核选择性卷积增强模块的特征点匹配新方法。该方法以ResNet34网络为基础,嵌入大核选择性卷积增强模块,动态实现不同目标地物的特征提取; 再利用稀疏邻域共识网络获得初始密集匹配,同时引入几何一致性和运动一致性约束完成匹配点的引导扩散得到匹配优化结果。该方法在Google Earth数据集上的正确点概率度量(percentage of correct keypoints,PCK)(α=0.05)精度可达0.89,相比SuperPoint,R2D2,NCNet,Sparse-NCNet,LoFTR以及Two-Stream网络分别提高了7.22%,5.95%,2.30%,4.71%,7.22%和9.88%,同时在Hpatches数据集上也表现出良好的泛化能力,证明本文方法具有一定有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓煜曦
李佳田
刘佳音
罗欣
杨涛
关键词 特征点匹配大核选择性卷积结构空间重构几何一致性运动一致性    
Abstract

Extracting information on various surface features from remote sensing images requires varying contextual data. To address this issue, this study proposed a new feature point matching method that integrated a large selective kernel-enhanced convolutional module. In this method, based on the ResNet34 network, a large selective kernel-enhanced convolutional module was embedded for dynamic feature extraction of different surface feature targets. Then, the initial dense matching was obtained using a sparse neighborhood consensus network. Meanwhile, geometric and motion consistency constraints were introduced to conduct the guided diffusion of matching points. Consequently, optimized matching results were achieved. This method yielded a PCK (α=0.05) accuracy of 0.89 on the Google Earth dataset, which increased by 7.22%, 5.95%, 2.30%, 4.71%, 7.22%, and 9.88%, respectively, compared to the SuperPoint, R2D2, NCNet, Sparse-NCNet, LoFTR, and Two-Stream networks. Additionally, it exhibited a high generalization ability on the Hpatches dataset. These results corroborate the effectiveness of the proposed method.

Key wordsfeature point matching    large selective kernel-enhanced convolutional structure    spatial reconstruction    geometric consistency    motion consistency
收稿日期: 2024-11-12      出版日期: 2025-12-31
ZTFLH:  TP751  
  TP79  
基金资助:国家自然科学基金项目“基于深度学习的犯罪预测及辅助决策方法”(72174203)
通讯作者: 李佳田(1975-),男,教授,博士生导师,主要从事数值最优化方法与机器场景理解方面的研究。Email: ljtwcx@163.com
作者简介: 邓煜曦(2000-),女,硕士研究生,主要从事遥感图像处理与应用。Email: 1374837549@qq.com
引用本文:   
邓煜曦, 李佳田, 刘佳音, 罗欣, 杨涛. 结合大核选择性卷积增强模块的遥感图像匹配网络[J]. 自然资源遥感, 2025, 37(6): 138-147.
DENG Yuxi, LI Jiatian, LIU Jiayin, LUO Xin, YANG Tao. A remote sensing image matching network combining a large selective kernel-enhanced convolution module. Remote Sensing for Natural Resources, 2025, 37(6): 138-147.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024365      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/138
Fig.1  结合大核选择性卷积增强模块的遥感图像特征点匹配网络
Fig.2  大核选择性卷积核卷积结构
Fig.3  空间重构单元
Fig.4  大核选择性卷积增强模块
方法 PCK值 MSE RMSE MAE CMR/%
α=0.1 α=0.05
SuperPoint 0.84 0.83 3.36 1.83 0.47 82.31
R2D2 0.85 0.84 33.91 5.82 0.60 80.44
NCNet 0.88 0.87 5.70 2.39 1.39 90.01
Sparse-NCNet 0.85 0.85 0.97 0.99 0.53 93.97
LoFTR 0.94 0.83 9.17 3.03 1.31 85.47
Two-Stream 0.90 0.81 0.92 0.96 0.52 94.12
本文方法 0.97 0.89 0.88 0.94 0.46 95.58
Tab.1  Google Earth数据集精度比较
Fig.5  对比网络在Google Earth数据集上的可视化结果图
Fig.6  本文网络可视化结果图
方法 PCK值 MSE RMSE MAE CMR/%
α=0.1 α=0.05
SuperPoint 0.76 0.74 14.51 3.81 0.50 80.21
R2D2 0.82 0.81 26.03 5.10 0.50 78.92
NCNet 0.84 0.83 101.34 10.01 1.04 77.27
Sparse-NCNet 0.81 0.80 15.60 3.95 0.41 91.74
LoFTR 0.92 0.83 26.34 5.13 1.07 85.28
Two-Stream 0.88 0.81 1.88 1.37 0.87 91.44
本文方法 0.93 0.84 1.74 1.31 0.57 91.53
Tab.2  WHU-RS19数据集精度比较
Fig.7  对比网络在WHU-RS19数据集上的可视化结果图
Fig.8  本文网络可视化结果图
方法 总体 照度 视角
准确率(%, <1/3/5 px)
SuperPoint 0.35/0.65/0.73 0.43/0.69/0.78 0.27/0.60/0.67
R2D2 0.33/0.73/0.81 0.37/0.76/0.85 0.29/0.70/0.77
NCNet 0.43/0.63/0.80 0.81/0.83/0.91 0.07/0.44/0.70
Sparse-NCNet 0.45/0.79/0.87 0.62/0.84/0.91 0.30/0.73/0.83
LoFTR 0.39/0.72/0.86 0.62/0.92/0.95 0.18/0.52/0.78
Two-Stream -/-/- -/-/- -/-/-
本文方法 0.44/0.82/0.91 0.61/0.92/0.98 0.26/0.71/0.84
Tab.3  Hpatches数据集的MMA精度比较
LSKC SRU MSE RMSE MAE
× × 0.971 0.985 0.530
× 0.962 0.981 0.492
× 0.889 0.943 0.447
0.884 0.940 0.463
Tab.4  大核选择性卷积增强模块的消融实验结果
[1] Girard N, Charpiat G, Tarabalka Y. Aligning and updating cadaster maps with aerial images by multi-task,multi-resolution deep learning[C]// Computer Vision - ACCV 2018. Cham: Springer International Publishing, 2019:675-690.
[2] 薛白, 王懿哲, 刘书含, 等. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
Xue B, Wang Y Z, Liu S H, et al. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
[3] Seo S, Choi J S, Lee J, et al. UPSNet:Unsupervised pan-sharpening network with registration learning between panchromatic and multi-spectral images[J]. IEEE Access, 2020,8:201199-201217.
[4] Li X, Feng R, Guan X, et al. Remote sensing image mosaicking:Achievements and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(4):8-22.
[5] 李星华, 艾文浩, 冯蕊涛, 等. 遥感影像深度学习配准方法综述[J]. 遥感学报, 2023, 27(2):267-284.
Li X H, Ai W H, Feng R T, et al. Survey of remote sensing image registration based on deep learning[J]. National Remote Sensing Bulletin, 2023, 27(2):267-284.
doi: 10.11834/jrs.20235012
[6] DeTone D, Malisiewicz T, Rabinovich A. SuperPoint:Self-supervised interest point detection and description[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).June 18-22,2018,Salt Lake City,UT,USA.IEEE,2018:337-33712.
[7] Laguna A B, Riba E, Ponsa D, et al. Key.Net:Keypoint detection by handcrafted and learned CNN filters[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).October 27-November 2,2019.Seoul,Korea.IEEE,2019:5835-5843.
[8] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014:1409.1556.https://arxiv.org/abs/1409.1556v6.
[9] Yang Z, Dan T, Yang Y. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018,6:38544-38555.
[10] Revaud J, De Souza C, Humenberger M, et al. R2d2:Reliable and repeatable detector and descriptor[J]. Advances in neural information processing systems, 2019,32.
[11] Rocco I, Cimpoi M, Arandjelović R, et al. Neighbourhood consensus networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems.December 3 - 8,2018,Montréal,Canada.ACM, 2018:1658-1669.
[12] Li X, Han K, Li S, et al. Dual-resolution correspondence networks[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems.December 6 - 12,2020,Vancouver,BC,Canada.ACM, 2020:17346-17357.
[13] Rocco I, Arandjelović R, Sivic J, et al. Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]// Computer Vision - ECCV 2020. ACM, 2020:605-621.
[14] 陈颖, 张祺, 李文举, 等. 参数合成空间变换网络的遥感图像一致性配准[J]. 中国图象图形学报, 2021, 26(12):2964-2980.
Chen Y, Zhang Q, Li W J, et al. Consistent registration of remote sensing images in parametric synthesized spatial transformation network[J]. Journal of Image and Graphics, 2021, 26(12):2964-2980.
doi: 10.11834/jig.200587
[15] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017,30.
[16] Sun J, Shen Z, Wang Y, et al. LoFTR:Detector-free local feature matching with transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 20-25,2021,Nashville,TN,USA.IEEE, 2021:8918-8927.
[17] Guo M H, Lu C Z, Liu Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4):733-752.
doi: 10.1007/s41095-023-0364-2
[18] Lau K W, Po L M, Rehman Y A U. Large separable kernel attention:Rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024,236:121352.
[19] Li X, Wang W, Hu X, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 15-20,2019. Long Beach,CA,USA.IEEE, 2019:510-519.
[20] Li J, Wen Y, He L. SCConv:Spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 17-24,2023,Vancouver,BC,Canada.IEEE,2023:6153-6162.
[21] Park J H, Nam W J, Lee S W. A two-stream symmetric network with bidirectional ensemble for aerial image matching[J]. Remote Sensing, 2020, 12(3):465.
doi: 10.3390/rs12030465
[22] Dai D, Yang W. Satellite image classification via two-layer sparse coding with biased image representation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):173-176.
doi: 10.1109/LGRS.2010.2055033
[23] Balntas V, Lenc K, Vedaldi A, et al. HPatches:A benchmark and evaluation of handcrafted and learned local descriptors[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).July 21-26,2017,Honolulu,HI,USA.IEEE,2017:3852-3861.
[1] 张杰, 王恒友, 霍连志. 基于特征增强和三流Transformer的高光谱遥感图像全色锐化[J]. 自然资源遥感, 2025, 37(6): 97-106.
[2] 朱睿, 李轶鲲, 李小军, 杨树文, 谢江陵. 基于上下文敏感贝叶斯网络的角度阈值多元变化检测[J]. 自然资源遥感, 2025, 37(5): 131-140.
[3] 魏林, 冉浩翔, 尹玉萍. 多尺度特征衔接的高光谱分类网络[J]. 自然资源遥感, 2025, 37(3): 113-122.
[4] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[5] 马敏, 左震, 韩燕东, 邱野, 乔牡冬. 松嫩平原土壤盐碱化地表基质成因研究[J]. 自然资源遥感, 2025, 37(2): 128-139.
[6] 卫虹宇, 姚文举, 孙建, 孙嵩, 张焕雪. 基于HSV和纹理特征的裸地分层精细提取[J]. 自然资源遥感, 2025, 37(2): 56-65.
[7] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[8] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[9] 郭勇, 张琳翔, 许泽宇, 蔡中祥. 结合桥梁难分样本优化的大清河流域水坝遥感检测[J]. 自然资源遥感, 2024, 36(4): 201-209.
[10] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[11] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
[12] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[13] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[14] 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2): 135-141.
[15] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发