Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 113-122    DOI: 10.6046/zrzyyg.2024060
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
多尺度特征衔接的高光谱分类网络
魏林1,2(), 冉浩翔1(), 尹玉萍3
1.辽宁工程技术大学软件学院,葫芦岛 125105
2.辽宁工程技术大学基础教学部,葫芦岛 125105
3.辽宁工程技术大学电气与控制工程学院,葫芦岛 125105
A classification network of hyperspectral images with multi-scale feature fusion
WEI Lin1,2(), RAN Haoxiang1(), YIN Yuping3
1. School of Software, Liaoning Technical University, Huludao 125105, China
2. Department of Basic Education, Liaoning Technical University, Huludao 125105, China
3. School of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
全文: PDF(5435 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对高光谱图像分类过程中难以有效提取多尺度特征和姿态信息容易丢失的问题,该文提出了一种多尺度特征衔接高光谱分类网络(hierarchical multi-scale concatenation net,HMC-Net)。首先,HMC-Net利用多尺度卷积核并行计算以提取多层次特征,同时引入1×1卷积核降低输入输出维度,平衡计算复杂度,从而在不显著增加总体计算负担的前提下,实现高效的特征提取;接着,采用独立的胶囊网络并行处理各尺度特征,即通过动态路由改进最大池化,增强特征的平移不变性以减少姿态信息丢失;最后,通过concatenate操作衔接整合不同尺度的特征图,从而实现对高光谱图像分类过程中多层次信息的精确解析。对比实验结果表明: HMC-Net在肯尼迪航天中心数据集、帕维亚大学数据集和萨利纳斯数据集上整体精度分别达到了94%,98%和99%,与最新的高光谱分类模型相比有明显性能优势,验证了该文所提模型的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏林
冉浩翔
尹玉萍
关键词 高光谱图像多尺度特征姿态信息胶囊网络动态路由    
Abstract

The classification of hyperspectral images faces challenges like ineffective extraction of multi-scale features and easy loss of pose information. Considering these challenges, this study proposed a classification network of hyperspectral images with multi-scale feature fusion-the hierarchical multi-scale concatenation net (HMC-Net). Initially, multi-scale convolution kernels were applied for parallel computing to extract multi-level features. Meanwhile, the 1×1 convolutional kernels were employed to reduce input-output dimensions, balancing computational complexity. These operations enabled efficient feature extraction without significantly increasing the overall computational burden. Subsequently, independent capsule networks were used for parallel processing of features at various scales. The max pooling was improved via dynamic routing to enhance the translation invariance of features, thereby reducing the loss of pose information. Finally, the concatenate operation integrated feature maps of different scales, thereby achieving a precise analysis of multi-level information in the classification of hyperspectral images. Comparative experimental results demonstrate that the HMC-Net achieved an overall accuracy of 94%, 98%, and 99% on the Kennedy Space Center, University of Pavia, and Salinas datasets, respectively. Compared to the latest classification model of hyperspectral images, the HMC-Net exhibited significant performance advantages, validating its effectiveness.

Key wordshyperspectral image    multi-scale feature    pose information    capsule network    dynamic routing
收稿日期: 2024-02-02      出版日期: 2025-07-01
ZTFLH:  TP751  
基金资助:辽宁省教育厅科学技术研究项目“高光谱图像分类的多层深度少样例学习方法研究”(LJKMZ20220687);辽宁省自然科学基金计划项目“自组织多层异构轻量化特征融合的高光谱图像高精度分类研究”(1704681991881);葫芦岛市科技计划项目“多极联注意力与拼图网络的高光谱地物高精度分类研究”(2023JH(1)4/04b)
通讯作者: 冉浩翔(1999-),男,研究生,主要研究方向为图像处理。Email: 3295906115@qq.com
作者简介: 魏林(1979-),男,博士,副教授,主要研究方向为机器学习、图像处理。Email: 29766164@qq.com
引用本文:   
魏林, 冉浩翔, 尹玉萍. 多尺度特征衔接的高光谱分类网络[J]. 自然资源遥感, 2025, 37(3): 113-122.
WEI Lin, RAN Haoxiang, YIN Yuping. A classification network of hyperspectral images with multi-scale feature fusion. Remote Sensing for Natural Resources, 2025, 37(3): 113-122.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024060      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/113
Fig.1  HMC-Net网络结构图
Fig.2  数据预处理
Fig.3  初始化卷积模块
Fig.4  初始卷积层特征图
Fig.5  胶囊层模块
模型名称 模型介绍
HMC-0 只使用单尺度卷积核的胶囊网络模型
HMC-1 使用最大池化层的多尺度卷积网络模型
HMC-Net(本文) 多尺度网络模型+改进最大池化层的网络模型
Tab.1  HMC-Net模型组合结构
模型名称 OA AA Kappa
HMC-0 97.42 97.01 98.02
HMC-1 92.43 91.96 92.36
HMC-Net(本文) 99.31 98.86 99.23
Tab.2  消融实验结果
Fig.6  消融实验分类结果图
Fig.7  肯尼迪航天中心数据集定性对比实验结果
量化
指标
SPP DCNN 3-D
CNN
SPL-
SR
CNN_
HSI
Spectral-
NET
HMC-Net
(本文)
AA 92 92 86 91 89 85 92
OA 91 93 93 92 93 87 94
F1分数 95 94 86 92 89 85 93
召回率 93 93 93 93 93 86 94
Tab.3  肯尼迪航天中心数据集定量对比实验结果
Fig.8  帕维亚大学数据集定性对比实验结果
量化
指标
SPP DCNN 3-D
CNN
SPL-
SR
CNN_
HSI
Spectral-
NET
HMC-Net
(本文)
AA 95 88 94 88 93 89 97
OA 93 92 94 84 94 91 98
F1分数 94 89 92 86 92 92 98
召回率 96 90 94 89 96 90 97
Tab.4  帕维亚大学数据集定量对比实验结果
Fig.9-1  萨利纳斯数据集定性对比实验结果
Fig.9-2  萨利纳斯数据集定性对比实验结果
量化
指标
SPP DCNN 3-D
CNN
SPL-
SR
CNN_
HSI
Spectral-
NET
HMC-
Net(本文)
AA 81 93 98 96 97 94 99
OA 76 89 96 93 95 89 99
F1分数 83 92 97 95 98 94 99
召回率 78 87 99 94 96 92 99
Tab.5  萨利纳斯数据集定量对比实验结果
Fig.10  模型参数量和OA对比图
[1] Li S T, Song W W, Fang L Y, et al. Deep learning for hyperspectral image classification:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709.
[2] Zhang Y, Wang J, Zhang J. A survey on hyperspectral image processing techniques for environmental monitoring[J]. Remote Sen-sing of Environment, 2023, 258(1): 1-19.
[3] Liu X, Liang Y, Wang Z. Hyperspectral remote sensing for land cover change detection:A review and meta-analysis[J]. Remote Sensing of Environment, 2023, 258(1): 20-38.
[4] Landgrebe D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1):17-28.
[5] Qu S M, Li X, Gan Z H. A new hyperspectral image classification method based on spatial-spectral features[J]. Scientific Reports, 2022,12:1541.
[6] Fukushima K. Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202.
doi: 10.1007/BF00344251 pmid: 7370364
[7] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[8] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[9] Jia Y Q, Szegedy C, Liu W, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015:1-9.
[10] Giri R N, Janghel R R, Pandey S K, et al. Enhanced hyperspectral image classification through pretrained CNN model for robust spatial feature extraction[J]. Journal of Optics, 2023, 53(3):2287-2300.
[11] Wang A L, Song Y L, Wu H B, et al. A hybrid neural architecture search for hyperspectral image classification[J]. Frontiers in Phy-sics, 2023,11:1159266.
[12] Chen Y, Zhang J, Liang X, et al. A novel meta-learning-based hyperspectral image classification method based on deep convolutional neural networks and multi-task learning[J]. Frontiers in Physics, 2023, 11(1):1-16.
[13] Zhang Y, Li J, Zhang L, et al. Hyperspectral image classification method based on 2D-3D CNN and multibranch neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12):2106-2110.
[14] Li Z, Huang W, Wang L, et al. A novel convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 11(1):1-16.
[15] Roy S K, Krishna G, Dubey S R, et al. HybridSN:Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):277-281.
[16] Hong D F, Han Z, Yao J, et al. SpectralFormer:Rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,60:5518615.
[17] Wei L, Ma H Y, Yin Y P, et al. Kmeans-CM algorithm with spectral angle mapper for hyperspectral image classification[J]. IEEE Access, 2023,11:26566-26576.
[18] Yin Y P, Wei L. Hyperspectral image classification using ensemble extreme learning machine based on fuzzy entropy weights and auto-adapted spatial-spectral features[J]. Multimedia Tools and Applications, 2023, 82(1):217-238.
[19] Hinton G E, KrizhevskyA, Wang S D. Transforming auto-encoders[C]// Artificial Neural Networks and Machine Learning-ICANN 2011. Springer, 2011:44-51.
[20] SabourS, FrosstN,Hinton G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.Curran Associates,Inc., 2017:3859-3869.
[21] Zhang H, Meng L, Wei X, et al. 1D-convolutional capsule network for hyperspectral image classification[C]// Artificial Neural Networks and Machine Learning-ICANN 2019. Springer, 2019:4451-4458.
[22] Hinton G E, Sabour S, Frosst N. Matrix capsules with EM routing[C]// International Conference on Learning Representations. OpenReview, 2018: 1-15.
[23] Moraga J, Duzgun H S. JigsawHSI:A network for hyperspectral image classification[J/OL]. arXiv, 2022(2022-06-06). https://arxiv.org/abs/2206.02327.
[24] Picco M L, Ruiz M S. Hyperspectral image classification using deep matrix capsules[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 10(1): 1-7.
[25] Li W, Du Q, Zhang H, et al. A novel deep learning framework for hyperspectral image classification using spatial pyramid pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61(3):1199-12111.
[26] Zhang Y, Du B. Deep model based transfer and multi-task learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61(8):4759-4770.
[27] Ahmad M, Khan A M, Mazzara M, et al. A fast and compact 3-D CNN for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020,19:5502205.
[28] He L, Li H, Plaza A, et al. PlazaA,etal.A novel self-paced learning framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62(4):1738-1752.
[29] Yu S Q, Jia S, Xu C Y. Convolutional neural networks for hyperspectral image classification[J]. Neurocomputing, 2017,219:88-98.
[30] Chakraborty T, Trehan U. SpectralNET:Exploring spatial-spectral WaveletCNN for hyperspectral image classification[J/OL]. arXiv, 2021(2021-04-01). https://arxiv.org/abs/2104.00341.
[31] Chen S T, Jin M, Ding J. Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network[J]. Multimedia Tools and Applications, 2021, 80(2):1859-1882.
[32] Zhang Y, Zhang L, Du B. Hyperspectral image classification based on deep feature fusion and residual learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):1576-1590.
[33] Tun N L, Gavrilov A, Tun N M, et al. Hyperspectral remote sensing images classification using fully convolutional neural network[C]// 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. IEEE, 2021:2166-2170.
[34] Fauvel M, Chanussot J, Benediktsson J A. A spatial-spectral kernel-based approach for the classification of remote-sensing images[J]. Pattern Recognition, 2012, 45(1):381-392.
[35] Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):93-97.
[36] Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2587-2600.
[1] 叶武剑, 谢林峰, 刘怡俊, 温晓卓, 李扬. 基于MobileNet的轻量化云检测模型[J]. 自然资源遥感, 2025, 37(3): 95-103.
[2] 张贻然, 潘斌, 徐夏, 朱俊峰. 基于字典学习光谱解混的绿藻亚像元面积估计[J]. 自然资源遥感, 2025, 37(2): 88-95.
[3] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[4] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[5] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[6] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[7] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[8] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[9] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[10] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[11] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[12] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[13] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[14] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[15] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发