Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 128-137    DOI: 10.6046/zrzyyg.2024346
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
双极化优化的时序InSAR形变监测研究
玄甲斌1(), 李如仁1, 傅文学2,3()
1.沈阳建筑大学交通与测绘工程学院, 沈阳 110168
2.中国科学院空天信息创新研究院数字地球重点实验室, 北京 100094
3.可持续发展大数据国际研究中心, 北京 100094
Deformation monitoring using time-series InSAR with dual-polarization optimization
XUAN Jiabin1(), LI Ruren1, FU Wenxue2,3()
1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
全文: PDF(6574 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高质量监测点的空间密度及其干涉相位质量是时序合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)开展形变监测的重要指标,为了进一步提高InSAR技术在非城市区域的形变监测能力,使用双极化Sentinel-1数据,提出了一种顾及分布式散射体(distributed scatterer, DS)的极化时序InSAR技术方法。该方法根据分布式散射体的特点,并将振幅离差(dispersion of amplitude, DA)作为相位质量评价指标,使用不同方法分别对时序SAR数据的强度信息和相位信息进行极化优化处理,对所优化前后数据进行地表形变监测。以浙江省宁波市为例,采用40景双极化(VV-VH)Sentinel-1数据进行实验。结果表明,所提方法能够显著提高监测点的密度和干涉相位质量。与单极化相比,永久散射体(persistent scatterer, PS)数量提高了约20%,DS点数量提高了约57.5%,干涉图相位质量有明显提升,平均相干性能够提升15%以上,可以更加详细地反映区域形变状况。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
玄甲斌
李如仁
傅文学
关键词 极化时序InSAR技术双极化Sentinel-1数据复杂地形的形变监测    
Abstract

The spatial density and interferometric phase quality of high-quality monitoring points serve as key indicators for deformation monitoring using the time-series interferometric synthetic aperture radar (InSAR) technique. To further enhance the deformation monitoring ability of the InSAR technique for non-urban areas, this study proposed a polarization time-series InSAR method that takes into account distributed scatterers (DSs) using dual-polarization images from Sentinel-1. Specifically, polarization processing of the intensity and phase information of time-series SAR data was conducted using various methods based on the characteristics of DSs and taking the dispersion of amplitude (DA) as an indicator for the phase quality assessment. Then, surface deformation monitoring was performed using the data before and after optimization. This study carried out experiments on Ningbo City in Zhejiang Province using 40 scenes of dual-polarization (VV-VH) images from Sentinel-1. The results indicate that the proposed method can significantly increase the density of monitoring points and the interferometric phase quality. Compared to single polarization, the proposed method increased the quantities of persistent scatterers (PSs) and DSs by about 20% and 57.5%, respectively. Furthermore, the interferometric phase quality was also significantly improved, with the average coherence increasing by more than 15%. The proposed method allows for a more detailed reflection of regional deformations.

Key wordspolarization time-series InSAR technique    dual-polarization images from Sentinel-1    deformation monitoring of complex terrain
收稿日期: 2024-10-19      出版日期: 2025-12-31
ZTFLH:  TP79  
  P237  
基金资助:广西科技重大专项“多模态信息驱动的稀土矿区安全要素遥感监测与预警”(桂科AA24206025)
通讯作者: 傅文学(1977-),男,博士,副研究员,主要从事微波遥感方向研究。Email: fuwx@aircas.ac.cn
作者简介: 玄甲斌(2000-),男,硕士研究生,主要从事合成孔径雷达形变监测研究。Email: 1317805916@qq.com
引用本文:   
玄甲斌, 李如仁, 傅文学. 双极化优化的时序InSAR形变监测研究[J]. 自然资源遥感, 2025, 37(6): 128-137.
XUAN Jiabin, LI Ruren, FU Wenxue. Deformation monitoring using time-series InSAR with dual-polarization optimization. Remote Sensing for Natural Resources, 2025, 37(6): 128-137.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024346      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/128
Fig.1  研究区域地形图
Fig.2  研究区地表覆盖分类及卫星影像图
Fig.3  双极化时序InSAR形变监测处理流程
Fig.4  SAR像元的极化空间参数搜索结果
Fig.5  PSO算法收敛性分析
Fig.6  不同极化方式下的平均强度图
Fig.7  2种典型区域的PS点数量对比
方法 指标范围
0~0.2 0~0.3 0~0.4 0~0.5
VV 1 969 10 797 35 874 92 982
OPT 2 592 13 573 42 976 107 726
(OPT-VV)/VV (↑) 31.6% 25.7% 19.8% 15.9%
Tab.1  不同阈值下选取的PS点数量
Fig.8  同质像元识别数量对比
Fig.9  DS点识别分布对比图
Fig.10  局部区域干涉图优化前后对比
干涉图 长时间基线(20230103—20220201) 短时间基线(20230103—20221128)
RPN SPD COH RPN SPD COH
VV 925 008 6.2e+07 0. 289 872 105 6.5e+07 0. 322
OPT 822 700
(11.1%↓)
5.9e+07
(4.9%↓)
0. 322
(11.4%↑)
754 483
(13.5%↓)
6.1e+07
(6.2%↓)
0. 371
(15.2%↑)
Tab.2  干涉图质量评价结果
Fig.11  研究区地表形变速率图
[1] Zhu C H, Wang C S, Zhang B C, et al. Differential interferometric synthetic aperture radar data for more accurate earthquake catalogs[J]. Remote Sensing of Environment, 2021,266:112690.
[2] Cigna F, Tapete D. Present-day land subsidence rates,surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021,253:112161.
[3] Liu Y F, Yang H L, Wang S Z, et al. Monitoring and stability analy-sis of the deformation in the woda landslide area in Tibet,China by the DS-InSAR method[J]. Remote Sensing, 2022, 14(3):532.
doi: 10.3390/rs14030532
[4] Zhao F, Wang T, Zhang L X, et al. Polarimetric persistent scatterer interferometry for ground deformation monitoring with VV-VH sentinel-1 data[J]. Remote Sensing, 2022, 14(2):309.
doi: 10.3390/rs14020309
[5] Blanco-Sánchez P, Mallorquí J J, Duque S, et al. The coherent pixels technique (CPT):An advanced DInSAR technique for nonlinear deformation monitoring[J]. Pure and Applied Geophysics, 2008, 165(6):1167-1193.
doi: 10.1007/s00024-008-0352-6
[6] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[C]// Proceedings of SAR Image Analysis,Modeling,and Techniques II. SPIE-International Society for Optical Engineering, 1999:132-139.
[7] 安炳琪, 罗海滨, 丁海勇, 等. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4) :838-846.
doi: 10.11873/j.issn.1004-0323.2021.4.0838
An B Q, Luo H B, Ding H Y, et al. Monitoring of surface deformation in Xining based on SBAS-InSAR[J]. Remote Sensing Technology and Application, 2021, 36(4):838-846.
[8] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878
[9] Zhang L, Lu Z, Ding X L, et al. Mapping ground surface deformation using temporarily coherent point SAR interferometry:Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012,117:429-439.
[10] Fan H D, Gao X X, Yang J K, et al. Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods[J]. Remote Sensing, 2015, 7(7):9166-9183.
doi: 10.3390/rs70709166
[11] 何倩. 联合PS和DS的时序InSAR地表沉降监测方法研究[D]. 徐州: 中国矿业大学, 2022.
He Q. Study on time-series InSAR method for monitoring surface subsidence with persistent and distributed scatterers[D]. Xuzhou: China University of Mining and Technology, 2022.
[12] Huang J L, Bai Y, Lei S G, et al. Time-series SBAS pixel offset tracking method for monitoring three-dimensional deformation in a mining area[J]. IEEE Access, 2020,8:118787-118798.
[13] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12):2039-2049.
Zhang L, Liao M S, Dong J, et al. Early detection of landslide hazards in mountainous areas of West China using time series SAR interferometry—a case study of Danba,Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049.
[14] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
doi: 10.1109/TGRS.2011.2124465
[15] 赵立峰. 基于DS-InSAR的矿区地表形变监测方法研究——以沛北矿区为例[D]. 徐州: 中国矿业大学, 2022.
Zhao L F. Study on surface deformation monitoring method based on DS-InSAR in mining area[D]. Xuzhou: China University of Mining and Technology, 2022.
[16] Goel K, Adam N. A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5454-5468.
doi: 10.1109/TGRS.2013.2289370
[17] Li T T, Zhang H Z, Fan H D, et al. Position inversion of goafs in deep coal seams based on DS-InSAR data and the probability integral methods[J]. Remote Sensing, 2021, 13(15):2898.
doi: 10.3390/rs13152898
[18] Chen B Q, Yang J L, Li Z H, et al. A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR[J]. GIScience & Remote Sensing, 2023, 60(1):31.
[19] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5):1551-1565.
doi: 10.1109/36.718859
[20] Pipia L, Fabregas X, Aguasca A, et al. Polarimetric differential SAR interferometry:First results with ground-based measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):167-171.
doi: 10.1109/LGRS.2008.2009007
[21] 赵峰, 张雷昕, 王腾, 等. 城市地表形变的双极化Sentinel-1数据极化时序InSAR技术监测[J]. 武汉大学学报(信息科学版), 2022, 47(9):1507-1514.
Zhao F, Zhang L X, Wang T, et al. Polarimetric persistent scatterer interferometry for urban ground deformation monitoring with sentinel-1 dual polarimetric data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9):1507-1514.
[22] Iglesias R, Fabregas X, Aguasca A. A new technique for Atmospheric Phase Screen(APS) compensation based on a 2D MultiplernRegression Model in Ground-Based SAR[C]// 9th European Conference on Synthetic Aperture Radar.Nuremberg,Germany:VDE Verlag GMBH, 2012:12-15.
[23] 冯瀚, 赵峰, 汪云甲, 等. 双极化Sentinel-1数据极化时序InSAR技术地表形变监测——以上海市浦东机场为例[J]. 遥感学报, 2022, 26(12):2531-2541.
Feng H, Zhao F, Wang Y J, et al. Dual-polarization Sentinel-1 data polarization time series InSAR technology surface deformation monitoring—Taking Shanghai Pudong airport as an example[J]. National Remote Sensing Bulletin, 2022, 26(12):2531-2541.
doi: 10.11834/jrs.20210423
[24] Navarro-Sanchez V D, Lopez-Sanchez J M, Vicente-Guijalba F. A contribution of polarimetry to satellite differential SAR interferometry:Increasing the number of pixel candidates[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2):276-280.
doi: 10.1109/LGRS.2009.2033013
[25] Iglesias R, Monells D, Fabregas X, et al. Phase quality optimization in polarimetric differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2875-2888.
doi: 10.1109/TGRS.2013.2267095
[26] Iglesias R, Monells D, López-Martínez C, et al. Polarimetric optimization of temporal sublook coherence for DInSAR applications[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):87-91.
doi: 10.1109/LGRS.2014.2326684
[27] 赵峰. 面向PSI技术的高质量SAR像元识别与干涉相位极化优化方法研究[J]. 地理与地理信息科学, 2020, 36(3):141.
Zhao F. Advanced pixel selection and optimization algorithms for persistent scatterer interferometry (PSI)[J]. Geography and Geo-Information Science, 2020, 36(3):141.
[28] Navarro-Sanchez V D, Lopez-Sanchez J M. Improvement of persistent-scatterer interferometry performance by means of a polarimetric optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):609-613.
doi: 10.1109/LGRS.2011.2176715
[29] 桂阳归, 汪长城, 卢丽君, 等. 顾及极化最优的时序双极化InSAR形变监测方法[J]. 测绘科学, 2021, 46(12):75-82.
Gui Y G, Wang C C, Lu L J, et al. A time-series dual-polarization InSAR method based on polarimetric optimization for monitoring deformation[J]. Science of Surveying and Mapping, 2021, 46(12):75-82.
[30] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603.
doi: 10.6038/cjg20161007
Jiang M, Ding X L, He X F, et al. FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603.
[31] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12):4767-4776.
doi: 10.6038/cjg2018L0490
Jiang M, Ding X L, Li Z W. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776.
[32] Jiang M, Yong B, Tian X, et al. The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,126:120-128.
[33] 方海伦, 胡荣荣, 邱雨欣. 基于PS-InSAR技术的宁波市地面沉降监测研究[J]. 地质灾害与环境保护, 2023, 34(4):50-55.
Fang H L, Hu R R, Qiu Y X. Study on land subsidence monitoring basing on ps-insar technique[J]. Journal of Geological Hazards and Environment Preservation, 2023, 34(4):50-55.
[34] Azadnejad S, Maghsoudi Y, Perissin D. Evaluation of polarimetric capabilities of dual polarized Sentinel-1 and TerraSAR-X data to improve the PSInSAR algorithm using amplitude dispersion index optimization[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,84:101950.
[35] Iglesias R, Mallorqui J J, López-Dekker P. DInSAR pixel selection based on sublook spectral correlation along time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3788-3799.
doi: 10.1109/TGRS.2013.2276023
[36] 温浩, 高峰, 胡在凰, 等. 地面沉降InSAR监测数据融合方法——以宁波市为例[J]. 测绘通报, 2024(s2):12-16.
Wen H, Gao F, Hu Z H, et al. Data fusion method of ground subsidence InSAR monitoring—a case study of Ningbo City[J]. Bulletin of Surveying and Mapping, 2024(s2):12-16.
[37] 马张烽, 蒋弥, 李桂华, 等. 空间网络对时序InSAR相位解缠的影响——以Delaunay与Dijkstra网络为例[J]. 测绘学报, 2022, 51(2):248-257.
doi: 10.11947/j.AGCS.2022.20200469
Ma Z F, Jiang M, Li G H, et al. Effects of spatial network on time series InSAR phase unwrapping:Take the Delaunay and Dijkstra networks for example[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):248-257.
[1] 刘昱甫, 白玉琪. 世界气象组织数据共享体系分析[J]. 自然资源遥感, 2025, 37(6): 1-9.
[2] 刘昱甫, 白玉琪. 国际耦合模式比较计划地球模拟数据全球共享体系分析[J]. 自然资源遥感, 2025, 37(6): 10-21.
[3] 张金华, 胡忠文, 张英慧, 张谦, 王敬哲, 邬国锋. 融合光学与LiDAR数据的实景三维模型山地植被制图[J]. 自然资源遥感, 2025, 37(6): 107-117.
[4] 葛利华, 王鹏, 张燕琴, 赵双林. 基于深度森林的遥感图像变化检测模型[J]. 自然资源遥感, 2025, 37(6): 118-127.
[5] 邓煜曦, 李佳田, 刘佳音, 罗欣, 杨涛. 结合大核选择性卷积增强模块的遥感图像匹配网络[J]. 自然资源遥感, 2025, 37(6): 138-147.
[6] 李凯旋, 刘俊伟, 王智博, 蒋文泷, 蔡汉林, 雷少刚, 杨永均. 基于Sentinel-2影像和BenchSegNet模型的露天煤矿台阶提取[J]. 自然资源遥感, 2025, 37(6): 148-155.
[7] 于冰, 张椿雨, 王金日, 刘国祥, 戴可人, 马德英. 基于SBAS-InSAR的白鹤滩库区长时序形变监测与滑坡隐患识别[J]. 自然资源遥感, 2025, 37(6): 156-168.
[8] 孙银锁, 方霄, 周东茂, 薛洪文, 苏俊武. 基于最优参数地理探测器模型的黄土高原植被动态时空序列分异及驱动力探究[J]. 自然资源遥感, 2025, 37(6): 169-181.
[9] 刘晋宇, 胡晋山, 康建荣, 朱益虎, 王胜利. 基于PSR和时序预测模型的露天煤矿区生态环境质量遥感评价[J]. 自然资源遥感, 2025, 37(6): 182-190.
[10] 张怡雯, 李凤霞, 张睿, 冯晓刚, 李萌, 胡墨清. 秦岭西安段生态系统服务时空演变与权衡/协同分析[J]. 自然资源遥感, 2025, 37(6): 191-200.
[11] 张莹, 陈运春, 郭晓飞, 吴晓聪, 陈凤林, 曾维军. 基于改进DeepLabV3plus架构的洱海流域水体精细提取[J]. 自然资源遥感, 2025, 37(6): 201-210.
[12] 王梓濛, 廖远鸿, 楼书含, 白玉琪. 森林城镇交界域划分方法对比研究——以加拿大艾伯塔省伍德布法罗市为例[J]. 自然资源遥感, 2025, 37(6): 211-218.
[13] 史晓辰, 罗晨颖, 张超, 王伟, 陈畅, 白雪川, 李少帅. 基于遥感数据的黑土区耕地生态防护评价[J]. 自然资源遥感, 2025, 37(6): 219-227.
[14] 臧明润, 廖远鸿, 陈舟, 白玉琪. 土地覆盖分类体系分析和总结[J]. 自然资源遥感, 2025, 37(6): 22-40.
[15] 李春意, 赵鹏翔, 丁来中, 王文杰, 高彦涛, 买志瑶, 郭亚星. 基于深度学习的东秦岭羟基蚀变信息遥感解译及可靠性检验[J]. 自然资源遥感, 2025, 37(6): 228-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发