Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 128-139    DOI: 10.6046/zrzyyg.2023330
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
松嫩平原土壤盐碱化地表基质成因研究
马敏1,2(), 左震3,4, 韩燕东3,4, 邱野3,4, 乔牡冬3,4()
1.自然资源部自然资源要素耦合过程与效应重点实验室,北京 100055
2.中国地质调查局自然资源综合调查指挥中心,北京 100055
3.中国地质调查局呼和浩特自然资源综合调查中心,呼和浩特 010010
4.黄河大黑河流域水资源开发与生态环境效应创新基地,呼和浩特 010010
Origin of surface substrate for soil salinization and alkalization in the Songnen Plain
MA Min1,2(), ZUO Zhen3,4, HAN Yandong3,4, QIU Ye3,4, QIAO Mudong3,4()
1. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Ministry of Natural Resources, Beijing 100055, China
2. Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China
3. Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
4. Innovation Base for Yellow River-Big Black River Water Resources Development and Eco-Environmental Effect, Hohhot 010010, China
全文: PDF(6645 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为查明松嫩平原土壤盐碱化地表基质成因,文章以松嫩平原松原市为例,使用Sentinel-2多光谱影像,遍历各类常用土壤盐分指数(soil salinity index, SSI)、土壤水分指数(soil water index, SWI)、植被指数(vegetation index, VI),构建最优三维光谱特征模型计算土壤盐碱化指数(soil salinization-alkalization index, SSAI),反演土壤盐碱化状况。通过对盐碱化区域地表水、地下水取样测试盐分离子含量,结合地下水位状况分析盐分离子来源。通过平面格网布点、垂向分层取样的方式开展地表基质调查,取得深部5 m以内不同层位共计2 362个土壤样品pH值和质地测试结果,构建三维地表基质模型。结果显示,遥感反演结果与表层土壤盐分含量拟合呈正相关线性关系(决定系数R2=0.74),研究区表现为小苏打型碱化特征,土壤盐分离子主要来源于地下水,深部多层黏质土壤起到隔水层的作用阻碍了盐分离子随水分的向下渗透运移和稀释,这一地表基质状况是研究区土壤盐碱化的客观成因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马敏
左震
韩燕东
邱野
乔牡冬
关键词 土壤盐碱化三维光谱特征模型Sentinel-2多光谱影像地表基质    
Abstract

To determine the origin of surface substrate for soil salinization and alkalization in the Songnen Plain, this study investigated Songyuan City based on Sentinel-2 multispectral images. Considering various commonly used indices like the soil salinity index (SSI), soil water index (SWI), and vegetation index (VI), this study constructed the optimal 3D spectral feature model to calculate the soil salinization-alkalization index (SSAI) for inversion of the soil salinization-alkalization status. Surface water and groundwater in areas subjected to soil salinization and alkalization were sampled to test their salt ion concentrations, followed by the analysis of salt ion sources according to the groundwater levels. The surface substrate was explored through planar grid layout and vertical stratified sampling. A total of 2 362 soil samples were collected in various layers within a depth of 5 m to test their pH and texture for the construction of a 3D surface substrate model. The results of this study reveal a positive linear correlation between the inversion result of remote sensing data and the topsoil salt content (coefficient of determination: R2=0.74). The study area was characterized by alkalization of sodium bicarbonate, with soil salt ions originating primarily from groundwater. The deep multilayer argillaceous soils acted as an aquiclude to prevent the downward infiltration, migration, and dilution of salt ions along with water. This surface substrate condition serves as the objective cause of soil salinization and alkalization in the study area.

Key wordssoil salinization and alkalization    3D spectral feature model    Sentinel-2 multispectral image    surface substrate
收稿日期: 2023-10-31      出版日期: 2025-05-09
ZTFLH:  TP751.1  
基金资助:中国地质调查局项目“松嫩平原松原地区黑土地地表基质调查项目”(ZD20220114);自然资源综合调查指挥中心科技创新基金项目“盐碱化遥感反演与地表基质特征研究——以松嫩平原松原市为例”(KC20230009)
通讯作者: 乔牡冬(1989-),男,硕士,高级工程师,主要研究方向为自然资源综合调查。Email: mdqiao400@163.com
作者简介: 马 敏(1987-),男,博士,高级工程师,主要研究方向为遥感地质。Email: mmin@mail.cgs.gov.cn
引用本文:   
马敏, 左震, 韩燕东, 邱野, 乔牡冬. 松嫩平原土壤盐碱化地表基质成因研究[J]. 自然资源遥感, 2025, 37(2): 128-139.
MA Min, ZUO Zhen, HAN Yandong, QIU Ye, QIAO Mudong. Origin of surface substrate for soil salinization and alkalization in the Songnen Plain. Remote Sensing for Natural Resources, 2025, 37(2): 128-139.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023330      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/128
Fig.1  研究区位置和盐碱化土壤类型、地下水位图
波段序号 名称 中心波长/μm 空间分辨率/m
B1 海岸 0.443 60
B2 蓝光 0.490 10
B3 绿光 0.560 10
B4 红光 0.665 10
B5 红边1 0.705 20
B6 红边2 0.740 20
B7 红边3 0.783 20
B8 近红外 0.842 10
B8A 植被红边 0.865 20
B9 水蒸气 0.945 60
B10 短波红外卷云 1.375 60
B11 短波红外1 1.610 20
B12 短波红外2 2.190 20
Tab.1  Sentinel-2多光谱传感器波段介绍
Fig.2  研究方法流程图
序号 名称 公式 参考文献
1 归一化土壤盐分指数NDSI NDSI=(B4-B8)/(B4+B8) [33-36]
2 近红外-短波红外盐分指数NSI NSI=(B11-B12)/(B11+B8) [37]
3 ASTER盐分指数ASTER_SI ASTER_SI=(B11-B12)/(B11+B12) [31,38 -39]
4 增强型盐分指数ESI ESI=2.5(B4-B8)/(B8+6B4-7.5B2+1) [40]
5 盐分指数SI1 SI1=(B4+B3)/2 [39,41]
6 盐分强度指数II1 II1=(B8+B4+B3)/3 [39,41]
7 盐分指数SI-T SI-T=(B4/B8)·100 [42]
8 波段比值盐分指数BRSI1 BRSI1=B2/B3 [42]
9 波段比值盐分指数BRSI2 BRSI2=B2/B4 [34,41 -44]
10 波段比值盐分指数BRSI3 BRSI3=B2/B8 [42]
11 波段比值盐分指数BRSI4 BRSI4=B3/B4 [42]
12 波段比值盐分指数BRSI5 BRSI5=B3/B8 [42]
13 波段比值盐分指数BRSI6 BRSI6=BB3/B2 [34,43 -44]
14 波段比值盐分指数BRSI7 BRSI7=BB2/B3 [34,42 -43]
15 波段比值盐分指数BRSI8 BRSI8= (B2-B4)/(B2+B4) [34,43]
16 波段比值盐分指数BRSI9 BRSI9=B11·B4/B3 [45]
17 波段比值盐分指数BRSI10 BRSI10= (B2-B12)/(B2+B12) [45]
18 波段比值盐分指数BRSI11 BRSI11=B11/B12 [34,39,42]
19 波段比值盐分指数BRSI12 BRSI12= (B4-B11)/(B4+B11) [34]
20 表层土壤盐分指数SSSI1 SSSI1=B11-B12 [31]
21 表层土壤盐分指数SSSI2 SSSI2=(B11·B12-B12·B12)/B11 [31]
22 盐分强度指数II2 II2= B 3 2 + B 4 2 + B 8 2 [34,39,41 -42]
23 盐分强度指数II3 II3= B 3 2 + B 4 2 [34,39,41 -42]
24 盐分亮度指数BI1 BI1= B 4 2 + B 8 2 [33,41 -42]
25 盐分亮度指数BI2 BI2= B 3 2 + B 8 2 [39,42]
26 盐分亮度指数BI3 BI3= B 4 2 + B 7 2 [31]
27 盐分指数SI2 SI2= B 2 · B 4 [31,33 -34,42 -43]
28 盐分指数SI3 SI3= B 3 · B 4 [33-34,39,41 -42,46]
29 盐分指数SI4 SI4= B 4 · B 8 [42]
Tab.2  常用的遥感土壤盐分光谱指数(SSI)
序号 名称 公式 参考文献
1 缨帽变换土壤湿度指数TCS TCS=0.150 9B2 + 0.197 3B3 + 0.327 3B4 + 0.340 6B8-0.711 2B11+0.457 3B12 [47-48]
2 归一化水分指数NDWI NDWI=(B8-B11)/(B8+B11) [40]
3 短波红外变换反射指数STR STR=0.5(1-B12)/B12 [49]
4 标准化多波段干旱指数NMDI NMDI=B8-(B11 -B12)/B8+B11-B12 [50]
5 简单比值水分指数SRWI SRWI=B8A/B11 [51]
6 陆表水分指数LSWI LSWI=(B8A-B11)/(B8A+B11) [52]
Tab.3  常用的遥感土壤水分光谱指数(SWI)
序号 名称 公式 参考文献
1 归一化植被指数NDVI NDVI=(B8-B4)/(B8+B4) [39,41,44,46]
2 环境植被指数EVI EVI=2.5(B8-B4)/ (B8 +6B4-7.5B2 +1) [39,46]
3 土壤调节植被指数SAVI SAVI=1.5(B8-B4)/ (B8+B4 +0.5) [34,39,41,47,53]
4 比值植被指数RVI RVI=B8/B4 [54]
5 差值植被指数DVI DVI=B8-B4 [41]
6 垂直植被指数PVI PVI=[B8-(aB4 +b)]/ ( 1 + a 2 ) [41,55]
7 改进型土壤调节植被指数TSAVI TSAVI=a[B8-(cB4+d)]/[B4+c(B8-d)+0.08(1+c2)] [41,56]
8 缨帽变换后的绿度指数TCG TCG=-0.063 5B1-0.112 8B2-0.168 0B3-0.348 0B4-0.330 3B5+0.085 2B6+ 0.330 2B7+0.316 5B8+0.362 5B8A+0.046 7B9-0.457 8B11-0.406 4B12 [57]
9 冠层盐分响应指数CRSI CRSI= ( B 8 · B 4 - B 4 · B 2 ) / ( B 8 · B 4 + B 4 · B 2 [42,46]
Tab.4  常用的遥感植被光谱指数(VI)
Fig.3  SSAI与TWSS拟合结果
Fig.4  遥感反演土壤盐碱化分布状况
统计量 盐分含量/
(g·kg-1)
ρ ( C O 3 2 - + H C O 3 - ) /
(g·kg-1)
ρ(Cl-+
S O 4 2 - ) /
(g·kg-1)
pH值
最大值 9.99 2.86 3.737 9.23
最小值 0.15 0.055 0.018 5.44
平均值 1.73 0.79 0.30 7.85
Tab.5  表层土壤盐分离子含量统计表
Fig.5  表层盐碱化土壤Piper三线图
Fig.6  土壤盐碱化变化状况桑基图
统计量 地表水 地下水
ρ ( C O 3 2 - + H C O 3 - ) /
(mg·L-1)
ρ ( C l - + S O 4 2 - ) /
(mg·L-1)
pH值 ρ ( C O 3 2 - + H C O 3 - ) /
(mg·L-1)
ρ ( C l - + S O 4 2 - ) /
(mg·L-1)
pH值
最大值 2 145.10 2 572.40 9.64 1 159.00 336.60 9.08
最小值 301.10 39.73 7.65 99.54 18.78 7.11
平均值 790.65 433.29 8.56 370.76 90.73 7.61
Tab.6  地表水、地下水盐分离子含量统计表
Fig.7  地表水和地下水盐分离子Gibbs图
Fig.8  土壤深位碱化特征
Fig.9  研究区地表基质三维特征
Fig.10  研究区土壤盐碱化过程示意图
[1] Ivushkin K, Bartholomeus H, Bregt A K, et al. Global mapping of soil salinity change[J]. Remote Sensing of Environment, 2019, 231:111260.
[2] FAO. Global map of salt affected soils version 1.0[EB/OL]. [2023-10-17]. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/.
[3] Setia R, Gottschalk P, Smith P, et al. Soil salinity decreases global soil organic carbon stocks[J]. Science of the Total Environment, 2013, 465:267-272.
[4] 刘兴土. 松嫩平原退化土地整治与农业发展[M]. 北京: 科学出版社, 2001: 15-350.
Liu X T. Regulation and agricultural development of degraded land in Songnen Plain[M]. Beijing: Science Press, 2001: 15-350.
[5] 杨帆, 罗金明, 王志春, 等. 松嫩平原盐渍化区水盐转化规律与调控机理[M]. 北京: 中国环境出版社, 2014:15-201.
Yang F, Luo J M, Wang Z C. Water-salt transformation law and regulation mechanism in salinization area of Songnen Plain[M]. Beijing: China Environmental Science Press, 2014:15-201.
[6] 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993.
Wang Z Q. Saline soil in China[M]. Beijing: Science Press, 1993.
[7] Zaman M, Shahid S A, Heng L. Guideline for salinity assessment,mitigation and adaptation using nuclear and related techniques[M]. Cham,Switzerland: Springer Open, 2018.
[8] 赵鹏敏, 贾政强. 东北平原西部盐碱地生态治理探析[J]. 东北水利水电, 2020, 38(5):47-49,72.
Zhao P M, Jia Z Q. Study on ecological management of saline-alkali land in west of Northeast Plain[J]. Water Resources & Hydropower of Northeast China, 2020, 38(5):47-49,72.
[9] Everitt J, Escobar D, Gerbermann A H, et al. Detecting saline soils with video imagery[J]. Photogrammetric Engineering and Remote Sensing (USA), 1988, 54(9):1283-1287.
[10] Metternicht G, Zinck J A. Spatial discrimination of salt- and sodium-affected soil surfaces[J]. International Journal of Remote Sensing, 1997, 18(12):2571-2586.
[11] Bell D, Menges C, Ahmad W, et al. Vegetation correction of airSAR data for mapping soil salinity in a tropical coastal environment[J]. Annual Congress of the Australian Society for Liminology, 2000:78-78.
[12] Salcedo F P, Cutillas P P, Cabañero J J A, et al. Use of remote sensing to evaluate the effects of environmental factors on soil salinity in a semi-arid area[J]. Science of the Total Environment, 2022, 815:152524.
[13] Zhang Y, Hou K, Qian H, et al. Characterization of soil salinization and its driving factors in a typical irrigation area of Northwest China[J]. Science of the Total Environment, 2022, 837:155808.
[14] 张琦林, 胡娟, 高英志, 等. 松嫩平原沙丘-草甸复合生态系统土壤水分和盐碱时空变化特征[J]. 中国农学通报, 2021, 37(20):49-58.
doi: 10.11924/j.issn.1000-6850.casb2020-0518
Zhang Q L, Hu J, Gao Y Z, et al. Spatiotemporal variations of soil water and saline-alkali in compound ecosystem of sand and mea-dow in the Songnen Plain[J]. Chinese Agricultural Science Bulletin, 2021, 37(20):49-58.
[15] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
[16] 张思源, 岳楚, 袁国礼, 等. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4):136-143.doi:10.6046/zrzyyg.2021349.
Zhang S Y, Yue C, Yuan G L, et al. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4):136-143.doi:10.6046/zrzyyg.2021349.
[17] Suweis S, Rinaldo A, Van der Zee A T M, et al. Stochastic modeling of soil salinity[J]. Geophysical Research Letters, 2010, 37(7):1-5.
[18] Perri S, Molini A, Hedin L O, et al. Contrasting effects of aridity and seasonality on global salinization[J]. Nature Geoscience, 2022, 15:375-381.
[19] 张殿发. GIS支持下的吉林西部平原土地盐碱化研究[D]. 长春: 长春科技大学, 2000.
Zhang D F. Study on soil salinization in the western plain of Jilin Province based on GIS[D]. Changchun: Changchun University of Science and Technology, 2000.
[20] 林年丰, Bounlom V, 汤洁, 等. 松嫩平原盐碱土的形成与新构造运动关系的研究[J]. 世界地质, 2005, 24(3):282-288,311.
Lin N F, Bounlom V, Tang J, et al. Study on the relation between the formation of saline-alkali soil and the Neotectonic Movement[J]. World Geology, 2005, 24(3):282-288,311.
[21] 方洪宾. 松辽平原第四纪地质环境与黑土退化[M]. 北京: 地质出版社, 2009.
Fang H B. Quaternary geological environment and black soil degradation in Songliao Plain[M]. Beijing: Geological Publishing House, 2009.
[22] Han Y, Ge H, Xu Y, et al. Estimating soil salinity using multiple spectral indexes and machine learning algorithm in Songnen Plain,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1912, 16:7041-7050.
[23] Yu H, Wang Z, Mao D, et al. Spatiotemporal variations of soil salinization in China’s West Songnen Plain[J]. Land Degradation & Development, 2023, 34:2366-2378.
[24] Fan Y, An F, Ma H, et al. Variations on soil salinity and sodicity and its driving factors analysis under microtopography in different hydrological conditions[J]. Water, 2016, 8:227.
[25] Qin Y, Bai Y, Chen G, et al. The effects of soil freeze-thaw processes on water and salt migrations in the western Songnen Plain,China[J]. Scientific Reports, 2021, 11(1):3888.
[26] 汪景宽, 王铁宇, 张旭东, 等. 黑土土壤质量演变初探I——不同开垦年限黑土主要质量指标演变规律[J]. 沈阳农业大学学报, 2002, 33(1):43-47.
Wang J K, Wang T Y, Zhang X D, et al. An approach to the changes of black soil quality (I): Changes of the indices of black soil with the year(s) of reclamation[J]. Journal of Shenyang Agricultural University, 2002, 33(1):43-47.
[27] 詹涛, 曾方明, 谢远云, 等. 东北平原钻孔的磁性地层定年及松嫩古湖演化[J]. 科学通报, 2019, 64(11):1179-1190.
Zhan T, Zeng F M, Xie Y Y, et al. Magnetostratigraphic dating of a drill core from the Northeast Plain of China:Implications for the evolution of Songnen paleo-lake[J]. Chinese Science Bulletin, 2019, 64(11):1179-1190.
[28] FAO. Harmonized world soil database v12.[EB/OL]. [2024-03-13]. https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.
[29] Steven M D, Malthus T J, Danson F M, et al. Monitoring responses of vegetation to stress[C]// 18th Annual Conference of the Remote Sensing Society Remote Sensing from Research to Operation, 1992:369-377.
[30] Bastiaanssen W G M, Molden D J, Makin I W. Remote sensing for irrigated agriculture:Examples from research and possible applications[J]. Agricultural Water Management, 2000, 46(2):137-155.
[31] Bannari A, Guedon A M, El-Harti A, et al. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor[J]. Communications in Soil Science and Plant Analysis, 2008, 39(19/20):2795-2811.
[32] Zhang T T, Zeng S L, Gao Y, et al. Using hyperspectral vegetation indices as a proxy to monitor soil salinity[J]. Ecological Indicators, 2011, 11(6):1552-1562.
[33] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77(1/2/3):96-109.
[34] Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries:Applications in a date palm dominated region[J]. Geoderma, 2014, 230:1-8.
[35] Zewdu S, Suryabhagavan K V, Balakrishnan M. Geo-spatial approach for soil salinity mapping in Sego Irrigation Farm,South Ethiopia[J]. Journal of the Saudi Society of Agricultural Sciences, 2017, 16(1):16-24.
[36] 赵瑞, 崔希民, 刘超. GF-5高光谱遥感影像的土壤有机质含量反演估算研究[J]. 中国环境科学, 2020, 40(8):3539-3545.
Zhao R, Cui X M, Liu C. Inversion estimation of soil organic matter content based on GF-5 hyperspectral remote sensing image[J]. China Environmental Science, 2020, 40(8):3539-3545.
[37] Abuelgasim A, Ammad R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data[J]. Remote Sensing Applications:Society and Environment, 2019, 13:415-425.
[38] Al-Khaier F. Soil salinity detection using satellite remote sensing[Z]. Enschede in Netherlands:International Institute for Geo-information Science and Earth Observation, 2003.
[39] Bouaziz M, Matschullat J, Gloaguen R. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil[J]. Comptes Rendus Geoscience, 2011, 343(11/12):795-803.
[40] Tran T V, Tran D X, Myint S W, et al. Examining spatiotemporal salinity dynamics in the Mekong River Delta using Landsat time series imagery and a spatial regression approach[J]. Science of the Total Environment, 2019, 687:1087-1097.
[41] El Kader Douaoui A, Nicolas H, Walter C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data[J]. Geoderma, 2006, 134(1/2):217-230.
[42] Allbed A, Kumar L, Sinha P. Soil salinity and vegetation cover change detection from multi-temporal remotely sensed imagery in Al Hassa Oasis in Saudi Arabia[J]. Geocarto International, 2018, 33(8):830-846.
[43] Abbas A, Khan S. Using remote sensing techniques for appraisal of irrigated soil salinity[C]// MODSIM07-Land, Water and Environmental Management: Integrated Systems for Sustainability,Proceedings, 2007:2632-2638.
[44] Abbas A, Khan S, Hussain N, et al. Characterizing soil salinity in irrigated agriculture using a remote sensing approach[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2013, 55:43-52.
[45] Li X, Li Y, Wang B, et al. Analysis of spatial-temporal variation of the saline-sodic soil in the west of Jilin Province from 1989 to 2019 and influencing factors[J]. CATENA, 2022, 217:106492.
[46] Scudiero E, Skaggs T H, Corwin D L. Regional scale soil salinity evaluation using Landsat 7,western San Joaquin Valley,California,USA[J]. Geoderma Regional, 2014, 2:82-90.
[47] Masoud A A, Koike K. Arid land salinization detected by remotely-sensed landcover changes:A case study in the Siwa region,NW Egypt[J]. Journal of Arid Environments, 2006, 66(1):151-167.
[48] Wang J, Ding J, Yu D, et al. Machine learning-based detection of soil salinity in an arid desert region,Northwest China:A comparison between Landsat8 OLI and Sentinel-2 MSI[J]. Science of the Total Environment, 2020, 707:136092.
[49] Sadeghi M, Jones S B, Philpot W D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands[J]. Remote Sensing of Environment, 2015, 164:66-76.
[50] Wang L, Qu J J. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007, 34(20):1-5.
[51] Maffei C, Leone A P, Vella M, et al. Retrieval of vegetation moisture indicators for dynamic fire risk assessment with simulated MODIS radiance[C]// 2007 IEEE International Geoscience and Remote Sensing Symposium.Barcelona,Spain.IEEE, 2007:4648-4651.
[52] Xiao X, Boles S, Liu J, et al. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95(4):480-492.
[53] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309.
[54] Pearson R, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie,Pawnee National Grasslands,Colorado[J]. Remote Sensing of Environment,VIII, 1972:1357-1381.
[55] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering & Remote Sensing, 1977, 43(12):1541-1552.
[56] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2/3):161-173.
[57] Crist E P. A TM Tasseled Cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3):301-306.
[58] Karavanova E I, Shrestha D P, Orlov D S. Application of remote sensing techniques for the study of soil salinity in semi-arid Uzbekistan[M]//Response to Land Degradation. Boca Raton: CRC Press, 2019:261-273.
[59] Abrol I, Yadav J S P, Massoud F. Salt-affected soils and their management[M]. Rome,Italy: Food & Agriculture Organization, 1988,39.
[60] Schoeneberger P, Wysocki D, Benham E, et al. Field book for describing and sampling soils,version 2.0[M]. Lincoln,OR,USA: Natural Resources Conservation Service,National Soil Survey Center, 2002:2-72.
[61] Ibrakhimov M, Khamzina A, Forkutsa I, et al. Groundwater table and salinity:Spatial and temporal distribution and influence on soil salinization in Khorezm Region (Uzbekistan,Aral Sea Basin)[J]. Irrigation and Drainage Systems, 2007, 21(3):219-236.
[62] Luo J, Yang F, Wang Y, et al. Mechanism of soil sodification at the local scale in Songnen Plain,Northeast China,as affected by shallow groundwater table[J]. Arid Land Research and Management, 2011, 25:234-256.
[63] Yang F, Zhang G, Yin X, et al. Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen Plain of China[J]. Environmental Earth Sciences, 2011, 64(8):2119-2126.
[1] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[2] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[3] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[4] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[5] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[6] 龙恩, 吕守业, 钱国栋, 连翠萍, 杨宇科, 陈玲艳. 基于云+端的天基遥感服务模式研究[J]. 自然资源遥感, 2023, 35(1): 258-264.
[7] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[8] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[9] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[10] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[11] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[12] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[13] 梁凯旋, 章桂芳, 张浩然. 一种综合DEM和遥感影像提取洪积扇的方法[J]. 国土资源遥感, 2020, 32(2): 138-145.
[14] 宋仁波, 朱瑜馨, 丁上珊, 贺巧宁, 王细元, 王月香. 基于GIS空间分析的任意多边形骨架线自动提取方法[J]. 国土资源遥感, 2020, 32(1): 51-59.
[15] 吴柳青, 胡翔云. 基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测[J]. 国土资源遥感, 2019, 31(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发